

Deliverable D4.2

Specification of Interfaces,

Protocols Component design and

implementation
Editor R. Casellas (CTTC)

Contributors CTTC, TID, UC3M, TIM, INF-P, ADTRAN, NBLF, CNIT, CNR,

UPC, OLC-E, ELIG, TuE, PLF

Version 2.0

Date October 31, 2023

Distribution PUBLIC (PU)

Ref. Ares(2023)8623791 - 15/12/2023

 D4.2 GA Number 101016663

DISCLAIMER

This document contains information, which is proprietary to the B5G-OPEN (Beyond 5G – OPtical

nEtwork coNtinuum) consortium members that is subject to the rights and obligations and to

the terms and conditions applicable to the Grant Agreement number 101016663. The action of

the B5G-OPEN consortium members is funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,

reproduced, modified, or communicated by any means to any third party, in whole or in parts,

except with prior written consent of the B5G-OPEN consortium members. In such case, an

acknowledgement of the authors of the document and all applicable portions of the copyright

notice must be clearly referenced. In the event of infringement, the consortium members

reserve the right to take any legal action they deem appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the

European Commission. Neither the B5G-OPEN consortium members as a whole, nor a certain

B5G-OPEN consortium member warrant that the information contained in this document is

suitable for use, nor that the use of the information is accurate or free from risk and accepts no

liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

 D4.2 GA Number 101016663

REVISION HISTORY

1.0 November 3, 2023 ALL Final version with reviewed

sections.

2.0 December 12, 2023 Lutz Rapp Quality check

Revision Date Responsible Comment

 D4.2 GA Number 101016663

LIST OF AUTHORS

Partner ACRONYM Partner FULL NAME Name & Surname

TID Telefonica I+D Oscar González de Dios

UC3M Universidad Carlos III

de Madrid

José Alberto Hernández, Alfonso

Sánchez-Macián, Gonzalo Martínez

TIM Telecom Italia Roberto Morro, Marco Quagliotti, Emilio

Riccardi

CTTC Centre Tecnològic de

Telecommunicacions

de Catalunya

Ramon Casellas, Laia Nadal, Michela Svaluto

Moreolo, Fco. Javier Vilchez, Ricardo

Martinez

Adtran Adtran Networks SE Achim Autenrieth, Stefan Zimmermann,

Vignesh Karunakaran, Jasper Müller

CNIT CNIT Davide Scano, Filippo Cugini

CNR CNR Alessio Giorgetti

ELIG E-lighthouse Network

Solution

Francisco-Javier Moreno-Muro, Pablo Pavón

Mariño, José-Manuel Martínez-Caro

NBL Nokia Bell Labs Fabien Boitier, Patricia Layec, Vinod Bajaj

 UPC Universitat Politecnica

de Catalunya

Luis Velasco, Marc Ruiz, Jaume Comellas,

Salvatore Spadaro, Davide Careglio, Josep

Prat

OLC-E OpenLightComm

Europe s.r.o.

Alexandros Stavdas, Evangelos Kosmatos,

Christos Matrakidis

PLF pureLiFi Ltd Rui Bian

INF-P Infinera Unipessoal

Lda

João Pedro

 D4.2 GA Number 101016663

GLOSSARY

Acronym Expansion Acronym Expansion

AI Artificial Intelligence NOS Node Operating System

ANN Artificial Neural Network NS Network Service

AP Access Point NSS Network Slice Subnet

API Application Programming Interface OA Optical Amplifier

ASIC Application Specific Integrated Circuit OADM Optical Add/Drop Multiplexer

BF Bloom Filter OCh Optical Channel

BGP Border Gateway Protocol ODTN Open and Disaggregated Transport Network

CD Chromatic Dispersion OIF Optical Internetworking Forum

CD Colorless/Directionless OLS Optical Line System

CDB Configuration Data Base OLT Optical Line Terminal

CEP Connection End Point ONF Open Networking Foundation

CLI Command Line Interface ONOS Open Network Operating System

CMIS Content Management Interoperability Services ONT Optical Network Termination

CMS Count-Min Sketch ONU Optical Network Unit

CPU Central Processing Unit OOPT Open Optical Packet Transport

CRUD Create, Read, Update and Delete OPCE Optical Path Computation Element

CS Connectivity Service OPM Optical Packet Metro

CSEP Connectivity Service End Point OSNIR Optical Signal-To-Noise plus Interference Ratio

DB Database OSNR Optical Signal-To-Noise Ratio

DGD Differential Group Delay OSPF Open Shortest Path First

DNN Deep Neural Network OTN Optical Transport Network

DPSM Data Path State Machine OTSi Optical Tributary Signal

DSR Digital Signal Rate P2MP Point-To-MultiPoint

EDFA Erbium Doped Fiber Amplifier PCE Path Computational Engine

EEPROM
Electrically Erasable Programmable Read-Only
Memory PLA Physical Layer impairment Aware

FEC Forward Error Correction PLI Physical Layer impairment

gNMI gPRC Network Management Interface PMD Polarization Mode Dispersion

gPRC gPRC Remote Call Procedure PON Passive Optical Network

GUI Graphical User Interface PSD Power Spectrum Density

HLL Hyper-LogLog PSU Power Supply Unit

HTTP Hypertext Transfer Protocol RAM Random Access Memory

HW Hardware RF Remote Feeder

 D4.2 GA Number 101016663

IBN Intent-Based Networking RMSA Routing, Modulation and Spectrum Assignment

IETF Internet Engineering Task Force ROADM Reconfigurable Optical Add/Drop Multiplexer

ILA In-Line Amplifier RPC Remote Procedure Call

IP Internet Protocol RSA Routing and Spectrum Assignment

IPoWDM IP over WDM SBI Southbound Interface

IT Information Technology S-BVT Sliceable Bandwidth/bitrate Variable Transceiver

ITU International Telecommunication Union SDN Software Defined Networking

JSON JavaScript Object Notation SIP Service Interface Point

KPI Key Performance Indicator SLA Service Level Agreement

LI Linear Impairments SMA Spectral and Modulation Assignment

LSP Label Switched Path SNR Signal To Noise Ratio

LTS Long Term Support SONiC Software for Open Networking in the Cloud

MB-PCE MultiBand PCE SRG Shared Risk Group

ML Machine Learning SSID Service Set Identifier

MPLS Multiprotocol Label Switching TAI Transponder Abstraction Interface

MSM Module State Machine TAPI Transport API

MUST Mandatory Uses Cases for Transport SDN TR Techical Recommendation

NBI North Bound Interface UUID Universallu Unique Identifier

NCF Nominal Central Frequency VDM Versatile Diagnostics Monitoring

NE Network Element VLAN Virtual Local Area Network

NEP Node Edge Point VM Virtual Machine

NF Noise Figure VRF Virtual Routing and Forwarding

NIC Network Interface Card VSI Virtual Switch Instance

NLI Nonlinear Interference WPA WiFi Protected Access

NLI Non Linear Impairments WSS Wavelength Selective Switch

NMC Network Media Channel YANG Yet Another Next Generation

NMS Network Management System

 D4.2 GA Number 101016663

EXECUTIVE SUMMARY

Deliverable D4.1 summarized the main Year 1 contributions of W4 and provided B5G-OPEN key

requirements, targeted services along with existing frameworks and functional elements and

defined the service orchestration and infrastructure control system (commonly referred to as

the Control Plane) which has been used as the reference architecture for work done in Year 2

and upcoming Year 3.

This document summarizes the interfaces and components required for the service

orchestration and infrastructure control system, as well as the implementation of the different

components developed in T4.1, T4.2 and T4.3. For each identified component, the deliverable

reports component functional tests, and individual KPIs in view of their subsequent integration

within WP5 demos. In this sense D4.2 complements the previous deliverable by specifying the

interfaces for such a modular architecture, which must rely on standard and open interface

definitions between the control plane functions and towards the devices.

After a short introduction of the B5G-OPEN control plane, Section 2 details the set of reference

points and interfaces that have been adopted and extended to allow the different functional

components to interwork. The interfaces covered are:

• OpenConfig and OpenROADM data models for the configuration of packet/optical

nodes, as well as Open ROADM, including aspects related to device discovery and

configuration.

• The usage of P4 and P4 runtime for the configuration of packet switching in the packet

optical whiteboxes, enabling packet controllers to either provision packet flows in the

nodes, or delegate to IP networking by configuring aspects of the IGP/EGP protocols.

• ONF Transport Application Programming Interface (T-API) for the purposes of enabling

an end user or network orchestrator to perform topology management and service

provisioning as well as for enabling externalized path computation in a multiband optical

network.

• The ONOS™ SDN controller north bound interface, which is open and has been

extended for specific purposes related to multi-band networking.

• Standards relevant to the configuration of pluggable elements as well as the usage of

adaptors to enable remote programmability and configuration.

• Interfaces for the configuration and control of PON and LiFi access networks, enabling

an end to end network orchestration from an end-to-end perspective, spanning the

segments of optical access, metro, and long haul.

• Interfaces from the point of view of the user or operator, enabling the provisioning of

cloud-based services such a slicing, by means of integration with the Kubernetes

container orchestration system.

The interfaces are briefly introduced, and key usage paths are detailed, which have been used

by implementors to ensure system interworking. Similarly, B5G-OPEN has defined a generic

telemetry platform enabling straightforward adaptations of devices or systems as data sources:

• Interfaces allowing the production of time series or events data (e.g., timestamped

events data) having a common collector and processor system. Examples of telemetry

sources are the TAPI network orchestrator, LiFi access points or spectrum monitoring

devices.

 D4.2 GA Number 101016663

Starting from Section 3, each component developed in WP4 is detailed. For each component,

the relevant sections provide a short introduction and description as well as the set of interfaces

it relies on and implements -- based on what has been detailed in Section 2 – as well as functional

validations that have been carried out, integrations between different components, and

updated roadmap compared to what it was defined in D4.1 and a set of individual component

Key Performance Indicators (KPIs) that have been evaluated or shall be evaluated in the scope

of WP4/WP5.

The following table provides the list of components that have been or are in the progress of

being integrated.

Component Partner Purpose

B5G-ONP network
planner

ELIG The B5G-OPEN Optical Network Planner (B5G-ONP)
component orchestrates both IT and network
resources. Within the B5G-OPEN project, the B5G-ONP
serves as the hub and provides design, optimization,
and planning tools to deploying, managing, and
configuring services and resources.

TAPI enabled
Network
Orchestrator

CTTC The TAPI-enabled Optical Network Orchestrator is
responsible for: i) providing a uniform, open and
standard view and interface to the higher levels and
components; ii) Composing a complete Context to be
consumed by B5G-OPEN network planner and
additional consumers combining information retrieved
from subsystems and sub-controllers; iii) Enabling a
single entry point for provisioning DSR and Photonic
Media services, including externalized path
computation and iv) providing an event telemetry data
source that reports events that happen asynchronously
in the network.

Path Computation
Element

OLC-E The Multi-Band Path Computation Engine (MB-PCE) is
based on a multi-band routing engine which ensures
that: i) routing is implemented by means of an efficient
spectrum and modulation-format assignment; and ii)
the impact of physical layer effects over the selected
optical paths is estimated and the results are
benchmarked against QoT target values (BER, OSNIR,
OSNR, etc).

ONOS Optical
Controller

CNIT The optical controller is based on the ONOS open-
source project [ONOS] that, besides the control of
optical devices, also provides a suitable environment
for the control of packet devices (e.g., based on
OpenFlow or P4Runtime protocols).
The main roles of the optical controller in the B5G-
OPEN project are: (i) retrieve device descriptions from
data plane and abstract them toward the upper control
layers; (ii) receive the service configuration requests by
the upper control layers and translate such requests in

 D4.2 GA Number 101016663

a set of configuration messages to be forwarded to
each involved device.

OLS Controller Adtran

CTTC

The OLS controller used in B5G-OPEN for an Adtran OLS
is based on the Adtran Ensemble Network Controller
software solution and is offering a northbound ONF
Transport-API (TAPI) towards the Optical Controller.

PON Controller OLC-E The Access Controller is responsible for: a) monitor the
PON network and receive any requests for PON
reconfiguration; b) translate these requests into high
level traffic requests that will be reported to the B5G-
ONP App; c) execute the appropriate actions in the
PON Controller in order to support the new requests.
In addition, the Access Controller will communicate
with the LiFi Controller for retrieving any con-
nection/traffic requests

LiFi Controller PLF The LiFi controller serves as the central component
responsible for managing LiFi APs in the network. It is
strategically positioned between the PON controller
and the LiFi AP. This specific positioning ensures
seamless communication and enhanced coordination
between the optical network layer and the wireless LiFi
communication layer

LiFi agent PLF The LiFi Agent acts as a central hub in the architecture
of the LiFi AP. With the advancement of NETCONF
capabilities, the agent provides a seamless way for the
AP to interact with other components, offering a
structured interface for configurations and
management

OpenROADM agent TIM The OpenROADM agent is an implementation of a
NETCONF server controlling optical network elements
using OpenROADM device models

OpenConfig agent CTTC

CNIT

OpenConfig agent is an implementation of an SDN
agent using NETCONF/YANG with the OpenConfig data
models. It implements a subset of the data models,
namely the OpenConfig platform and optical transport
as well as some extensions devised in the context of
B5G-OPEN to report details about the transceiver
operational mode

SONiC based packet
optical node

CNIT The Software for Open Networking in the Cloud, i.e.,
SONiC, [SONIC] is considered as the Network Operating
System (NOS) to be deployed on packet-optical
IPoWDM nodes operated in metro/aggregation
networks. Within the B5G-OPEN project SONiC has
been extended with several components provided in
the form of docker containers.

AI/ML models for
PSD and Power
Management

NOKIA Machine learning application towards augmented
optical networks and is called “Automatic power
correction”

Telemetry System UPC
CTTC

B5G/OPEN distributed telemetry system integrates
measurements and event data collection and supports
intelligent data aggregation nearby data collection, so

 D4.2 GA Number 101016663

Adtran
Nokia

agents receive and analyze measurements before
sending to a centralized manager.

Mesarthim – Failure
management Using
a SNR Digital Twin

UPC MESARTHIM compares the QoT measured in the
transponders with the one estimated using a QoT tool.
Deviations can be explained by changes in the value of
input parameters of the QoT model representing the
optical devices, like noise figure in optical amplifiers
and reduced Optical Signal to Noise Ratio in the
Wavelength Selective Switches. By applying reverse
engineering, MESARTHIM estimates the value of those
modelling parameters as a function of the observed
QoT of the lightpaths

Ocata - Digital Twin
for the Optical Time
Domain

UPC OCATA is a deep learning-based digital twin for the
optical time domain that is based on the concatenation
of deep neural networks (DNN) modelling optical links
and nodes, which facilitates representing lightpaths.
The DNNs model linear and nonlinear noise, as well as
optical filtering

As a summary, WP4 has completed the second year with key objectives fulfilled. This year has

been mostly focused on developing the different software components; specifying the

interfaces and protocols to enable the interconnection of such components, making sure that

the components present neither functional gaps, nor regressions and evaluating their KPIs.

All the tasks, T4.1 - T4.3, are progressing well, covering the implementation of SDN-based

technologies and solutions to operate on packet-optical nodes based on SONiC and using

coherent pluggable modules, addressing the design, development and validation of a

generalized orchestration and control plane system and closed the hierarchical and distributed

telemetry system including realistic data available for testing different algorithms and the

optical time domain digital twin.

The deliverable has set the foundations for the final WP4 year, which will focus on missing

aspects related to further integrating the components in view of the demonstrations, addressing

transparent multi-domain scenarios, and covering network autonomy with closed-loop

operations involving the SDN control plane and the telemetry system.

 D4.2 GA Number 101016663

TABLE OF CONTENTS

1 Introduction ...1

2 B5G-OPEN Interfaces and Protocols ...3

2.1 OpenConfig for Packet and Optical Devices ..3

2.1.1 Device discovery Workflow ..5

2.1.2 Configuration of the Optical Channel ..6

2.1.3 Operational Mode Extensions for Physical Layer Characterization7

2.2 P4 and P4 Runtime ... 10

2.3 Transport API (TAPI) for Topology Management and Service Provisioning 11

2.3.1 Generic Aspects ... 11

2.3.2 General Remarks .. 12

2.3.3 Context & Service Interface Points discovery... 13

2.3.4 Topology Discovery .. 14

2.3.5 Retrieve a Link .. 15

2.3.6 Retrieve a Node.. 15

2.3.7 Creating a Service .. 16

2.3.8 Retrieval of Connectivity Service and Connections .. 17

2.3.9 Service Deletion ... 17

2.4 Path Computation (TAPI) for Externalized Path Computation 17

2.5 ONOS REST-based APIs .. 20

2.5.1 Operational Modes .. 20

2.5.2 Intents ... 22

2.5.3 Links .. 26

2.5.4 Nodes .. 27

2.6 OpenROADM .. 28

2.7 Interfaces for the Telemetry Platform .. 29

2.8 Control of pluggable modules ... 33

2.8.1 Transceiver Configuration PUT methods details .. 35

2.8.2 Transceiver Configuration GET method details.. 36

2.9 1.1 PON Control .. 37

2.9.1 1.1.2 PON Controller NBI Retrieve Configuration ... 38

2.9.2 1.1.3 PON Controller NBI Retrieve OLTs Configuration 40

2.9.3 1.1.4 PON Controller NBI Retrieve ONUs Configuration 43

2.9.4 1.1.5 PON Controller NBI Retrieve SLAs Configuration 45

2.9.5 1.1.6 PON Controller NBI SLA Creation ... 46

 D4.2 GA Number 101016663

2.9.6 1.1.7 PON Controller NBI SLA Update ... 47

2.9.7 1.1.8 PON Controller NBI SLA Delete ... 48

2.10 LiFi Integration .. 49

2.10.1 NBI for the LiFi controller .. 49

2.10.2 NBI for the LiFi AP .. 52

2.11 B5G-OPEN North Bound Interface .. 53

2.11.1 B5G-ONP NBI User Authentication ... 54

2.11.2 B5G-ONP NBI SDN Network Controller Management ... 54

2.11.3 B5G-ONP NBI Container Orchestrator Management .. 56

2.11.4 B5G-ONP NBI Network application provisioning .. 57

2.11.5 B5G-ONP NBI Network slice provisioning ... 59

2.11.6 B5G-ONP NBI DSR connection provisioning ... 62

2.11.7 B5G-ONP NBI IP flow provisioning .. 62

2.12 Kubernetes.. 64

2.13 Telemetry Data Sources ... 66

2.13.1 TAPI Optical Network Orchestrator / SDN controller .. 66

2.13.2 LiFi Access Points ... 67

2.13.3 Data Collection ... 69

2.13.4 Spectrum monitoring ... 69

3 B5G-OPEN Optical Network Planner (B5G-ONP) .. 71

3.1 Component architecture.. 72

3.2 Interfaces .. 73

3.3 Functional Validations .. 74

3.4 Component Integration ... 76

3.4.1 Kubernetes ... 76

3.4.2 PON SDN Controller ... 76

3.4.3 IP SDN Controller ... 76

3.4.4 TAPI Orchestrator .. 76

3.4.5 OLS Controller .. 76

3.5 Roadmap ... 77

3.6 Component KPIs ... 77

3.6.1 Topology Discovery Time ... 78

3.6.2 Analysis / dimensioning delay ... 78

3.6.3 Connectivity service provisioning latency... 79

3.6.4 Optical Path computation element latency .. 79

3.6.5 Scalability In terms of Number of Elements ... 79

 D4.2 GA Number 101016663

4 TAPI-enabled Optical Network Orchestrator with externalized Path Computation 80

4.1 Introduction .. 80

4.2 Internal Architecture .. 81

4.3 interface Specification ... 82

4.3.1 North Bound Interface (NBI) towards the B5G-ONP .. 82

4.3.2 South Bound Interface (SBI) towards ONOS Native Interface 82

4.3.3 Interface towards the Path Computation Element (PCE) 84

4.3.4 Interface towards the Telemetry System ... 85

4.4 Component Integration ... 86

4.4.1 B5G-ONP ... 86

4.4.2 PCE .. 86

4.4.3 Telemetry System .. 86

4.4.4 ONOS SDN controller ... 86

4.5 Functional Validations .. 87

4.5.1 TAPI Orchestrator / SDN Controller Integration, Discovery 87

4.5.2 TAPI Orchestrator Context Retrieval and Service Provisioning 88

4.5.3 REDIS Integration with B5G-OPEN Telemetry System ... 88

4.5.4 Externalized Path Computation .. 88

4.6 Roadmap ... 90

4.7 Component KPIs ... 90

4.7.1 Service Provisioning Latency ... 91

4.7.2 Service Provisioning Overhead .. 91

4.7.3 Path Computation Latency .. 92

4.7.4 Scalability in Number of Elements .. 92

4.7.5 Provisioning Rate ... 93

5 Path Computation Elements – PCE .. 94

5.1 Introduction .. 94

5.2 Internal Architecture .. 94

5.3 interface Specification ... 95

5.3.1 South Bound Interface (SBI) towards the TAPI Optical Network Orchestrator 96

5.3.2 North Bound Interface (NBI) towards the TAPI Optical Network Orchestrator ... 96

5.4 Component Integration ... 96

5.4.1 TAPI Optical Network Orchestrator .. 96

5.5 Functional Validations .. 96

5.5.1 Network Discovery ... 96

5.5.2 Path Computation ... 96

 D4.2 GA Number 101016663

5.6 Roadmap ... 97

5.7 Component KPIs ... 97

6 Optical Controller ... 98

6.1 Component architecture and progress during B5G-OPEN .. 98

6.2 Integration with other components and Interfaces specification 99

6.3 Roadmap ... 99

6.3.1 Open-source contributions ... 100

6.4 Functional validation .. 100

6.5 Scalability assessment and KPIs ... 101

6.5.1 Network emulator .. 101

6.5.2 Reference networks ... 103

6.5.3 ONOS enhancements... 105

6.5.4 Test and measured KPIs ... 106

7 OLS controller ... 110

8 PON Controller .. 115

8.1 Introduction .. 115

8.2 Internal Architecture .. 115

8.3 interface Specification ... 116

8.3.1 South Bound Interface (SBI) towards the PON Controller (Tibit) 116

8.3.2 North Bound Interface (NBI) towards the LiFi Controller 116

8.3.3 South Bound Interface (SBI) towards the B5G-ONP app 116

8.4 Component Integration ... 116

8.5 Functional Validations .. 116

8.5.1 Communication with PON Controller and Retrieving Network information 116

8.5.2 Communication with LiFi Controller and B5G-ONP APP 119

8.6 Roadmap ... 119

8.7 Component KPIs ... 119

9 LiFi controller .. 121

9.1 Summary ... 121

9.2 Description and internal architecture ... 121

9.3 Interface specifications .. 121

9.4 Functional test and validation ... 122

9.5 Component integration and roadmap .. 123

9.6 component KPIs .. 123

10 LiFi agent .. 124

10.1 Summary ... 124

 D4.2 GA Number 101016663

10.2 Description and internal architecture ... 124

10.3 Interface specification .. 124

10.4 Functional test and validation ... 124

10.5 Component integration and roadmap .. 125

10.6 Component KPIs ... 125

11 OpenROADM Agent .. 127

11.1 Description and internal architecture ... 127

11.2 Interface Specification ... 127

11.3 Functional Tests and Validations ... 129

11.4 Component Integration and Roadmap ... 129

11.5 Component KPIs ... 129

11.5.1 Agent start-up delay .. 130

11.5.2 ONOS Discovery Latency ... 131

11.5.3 Connection latency .. 131

12 OpenConfig Agent ... 132

12.1 Introduction .. 132

12.2 Description and Internal Architecture... 132

12.3 Interface Specification ... 134

12.4 Functional Tests and Validations ... 134

12.5 Component Integration and Roadmap ... 135

12.6 Component KPIs ... 135

12.6.1 Instantiation Delay ... 136

12.6.2 Discovery Latency .. 137

12.6.3 Operational Mode Characterization ... 137

12.6.4 Transaction Delay... 139

13 SONIC-based Packet Optical Node ... 140

13.1 Component architecture.. 140

13.2 Interface specifications .. 140

13.2.1 Toward the SDN optical controller.. 140

13.2.2 Toward the SDN packet controller .. 141

13.2.3 Toward the telemetry system ... 141

13.2.4 SBI toward SONiC native features ... 141

13.3 Component integration.. 141

13.4 Functional validation .. 142

13.5 Roadmap ... 143

13.6 KPIs .. 143

 D4.2 GA Number 101016663

13.6.1 ZR and ZR+ frequency configuration ... 143

13.6.2 ZR+ frequency slot evaluation ... 144

14 OpenROADM Agent .. 146

15 AI/ML models for PSD and Power Management ... 148

15.1 Component architecture.. 148

15.2 Interfaces .. 149

15.3 Functional validation .. 150

15.4 Component integration.. 150

15.5 Roadmap ... 150

15.6 Component KPIs ... 150

16 Telemetry System .. 152

16.1 Introduction .. 152

16.2 Internal Workflow and interfaces.. 152

16.3 Functional Validation ... 153

16.4 Component Integration ... 153

16.5 Roadmap ... 153

16.6 Component KPIs ... 153

17 Mesarthim – Failure management Using a SNR Digital Twin.. 155

17.1 Workflow and interfaces .. 155

17.2 Functional Validation ... 156

17.3 Component Integration ... 157

17.4 Roadmap ... 157

17.5 Component KPIs ... 157

18 Ocata - Digital Twin for the Optical Time Domain ... 158

18.1 Workflow and interfaces .. 158

18.2 Functional Validation ... 159

18.3 Component Integration ... 160

18.4 Roadmap ... 160

18.5 Component KPIs ... 160

19 Conclusions .. 161

20 References ... 162

 D4.2 GA Number 101016663

LIST OF FIGURES

Figure 2-1 Hierarchy of components of an open terminal device ... 4
Figure 2-2 P4 development workflow [https://p4.org/] ... 10
Figure 2-3 TAPI representation of a digital service between pluggables across an optical network

 ... 12
Figure 2-4 Exemplified TAPI Optical Network Orchestrator -.OPCE interaction. 18
Figure 2-5: main menu of NetApp Optical Network Model REST APIs 20
Figure 2-6: Operational Modes REST APIs. ... 21
Figure 2-7: Response to GET opmodes .. 21
Figure 2-8: intents REST APIs. .. 23
Figure 2-9 Example of POST intent method. .. 24
Figure 2-10: links REST APIs. .. 26
Figure 2-11: response body of GET perBandChahnnels .. 27
Figure 2-12: nodes REST APIs. ... 27
Figure 2-13: Response body for GET nodes.. 28
Figure 2-14 Extract of OpenROADM tree for multiband support .. 29
Figure 2-15: Example of JSON object injected by a data source to the telemetry system 30
Figure 2-16: Telemetry gRPC interface Protocol Buffers schema definition 30
Figure 2-17: Telemetry Node endpoint structure... 31
Figure 2-18: (left) CMIS Module State Machine (MSM); (right) Data Path State Machine (DPSM)

 ... 33
Figure 2-19: REST APIs developed on top of SONIC. ... 35
Figure 2-20: PUSH method of Transceiver Configuration ... 36
Figure 2-21: Response of GET Transceiver Configuration method. ... 37
Figure 2-22: B5G-ONP NBI endpoint structure ... 54
Figure 2-23: Kubernetes cluster architecture (source: [K8s]) ... 64
Figure 2-24: Structure for the kube-apiserver endpoints ... 65
Figure 2-25: ADVA Flex-Telemetry agent. .. 69
Figure 2-26 Nokia Optical Network testbed ... 70
Figure 3-1 Architecture and interconnection of B5G-ONP component 71
Figure 4-1 B5G-OPEN Control Plane architecture for the Optical Network Control, showing the

role of the TAPI enabled Optical Network Orchestrator with Externalized Path Computation. . 80
Figure 4-2 B5G Internal module architecture of the B5G-OPEN TAPI enabled Optical Network

Orchestrator with Externalized Path Computation .. 81
Figure 4-3 the Graphical User Interface of the TAPI enabled Optical Network Orchestrator with

Externalized Path Computation ... 82
Figure 4-4 the Graphical User Interface of the TAPI enabled Optical Network Orchestrator with

Externalized Path Computation ... 85
Figure 4-5 Distributed architecture supporting intelligent Optical measurement Aggregation and

Streaming Event Telemetry [Vel23] ... 86
Figure 4-6 TAPI Network Orchestrator showing the topology retrieved from ONOS 87
Figure 4-7 TAPI Network Orchestrator showing the TAPI context .. 88
Figure 4-8 BT 22-ROADM node used in Path computation KPI validation. 89
Figure 4-9 Telefonica topology to validate scalability... 93
Figure 5-1 B5G-OPEN Control Plane architecture for the Optical Network Control, showing the

role of the Multi-Band Path Computation Engine (MB-PCE)... 94

 D4.2 GA Number 101016663

Figure 5-2 The flow chart of a multi-band PCE operation. .. 95
Figure 6-1 internal architecture of the optical controller, based on ONOS open-source software.

 ... 99
Figure 6-2 Network discovery validation. .. 101
Figure 6-3: Structure of the reference Metro Regional Network .. 103
Figure 6-4: ONOS GUI representation of the three networks ... 107
Figure 7-1 Adtran OLS Controller Northbound Interfaces .. 110
Figure 8-1 B5G-OPEN PON Controller and Access Controller ... 115
Figure 8-2 PON Controller Dashboard – General dashboard .. 117
Figure 8-3 PON Controller Dashboard – OLT Summary .. 117
Figure 8-4 PON Controller Dashboard – ONU Summary ... 118
Figure 8-5 PON Controller Dashboard – SLA/Bandwidth profile configuration 118
Figure 10.1: Preliminary result of LiFi Agent Provisioning Time .. 126
Figure 11.1: OpenROADM agent architecture ... 127
Figure 12.1: OpenConfig agent scope and macroscopic architecture 132
Figure 12.2: SDN Controlled SBVT ... 133
Figure 12.3: configuration of a SBVT Optical Channel using OpenConfig 134
Figure 13.1: internal architecture of the packet optical node. ... 140
Figure 13.2: testbed environment for functional validation. .. 142
Figure 13.3: control performance of coherent pluggable modules in IPoWDM whitebox. 143
Figure 14.1: OpenROADM agent architecture.. 146
Figure 14.2: OpenROADM implemented over NetEmu .. 147
Figure 15-1: architecture of the automatic power correction component 149
Figure 15-2: interconnection of the automatic power correction component with optical mesh

network and telemetry database .. 149
Figure 15-3: SNR gain/loss performance .. 151
Figure 15-4: investigation of scalability of the component ... 151
Figure 18.1: Proposed telemetry architecture ... 152
Figure 17.1: Mesarthim architecture and its relationship with the Telemetry System 156
Figure 18.1: OCATA Reference Network Architecture .. 158
Figure 18.2: Details of sandbox (a) and node agent (b) .. 159

 D4.2 GA Number 101016663

LIST OF TABLE

Table 1: KPIs for B5G-ONP component .. 77
Table 2: Main parameters of the selected networks .. 104
Table 3: ONOS network setup times .. 106
Table 4: ONOS connections setup times .. 108
Table 5: Status of two disjoint connections (intents) instatiated over the large network. 108
Table 6: Experimental results of the ZR+ pluggable evaluation .. 144

 D4.2 GA Number 101016663

1

1 INTRODUCTION

D4.1 detailed the Infrastructure Control and Service Management architecture to be

implemented in the B5G-OPEN Control, Orchestration and Telemetry System (control plane for

short), along with a set of initial requirements, and existing frameworks. After outlining a set of

initial requirements and use cases, carefully developed with WP2, and extended to the control

plane, D4.1 listed the services that the control plane of B5G-OPEN must support such as point-

to-point optical connectivity, IP link provisioning, or telemetry. Next, D4.1 contained thorough

review of existing frameworks in the literature, different tools for implementing network

telemetry systems, main orchestration frameworks and Quality of Transmission (QoT)

estimation tools. The core of the document was the definition of different parts of the control

plane architecture, including service orchestration and planning, optical-packet integration

systems and telemetry and intent-based networking, covering the SDN control of optical multi-

band networks, the control of different access technologies (PON, LiFi, etc) and IT and network

resource orchestration platform for autonomous network operations.

The main innovations for the control plane of B5G-OPEN are:

- [multiband control] Control of an optical multi-band network, this means being able to

exploit the multiband capabilities of optical devices such as transmission (Tx) elements

(transceivers) or switching elements (multi-band ROADMs).

- [transparent multi-domain, domain-less] The ability to set up connections in a

transparent manner, across multiple domains and network segments. This is

exemplified in the “multi-OLS” scenario, in which different optical line systems are

interconnected without a O/E/O conversion. There is a systematic need to extend SDN

principles to networks composed of multiple domains and technological layers.

- [Packet/optical integration] The evolution from discrete optics towards pluggable

interfaces is challenging the design of the control plane which, to a large extent, has

considered the control plane of the IP/MPLS layer largely decoupled from the control

plane of the optical layer. Current architectures for the SDN control plane of the

transport network consider the scope of the control limited to transceiver to transceiver

and the tunability of the transceiver was directly under the control of the optical SDN

controller. Multi-layer networking was commonly accomplished typically with a

hierarchical arrangement of controllers (a packet controller and an optical controller

under the orchestration of a parent controller). This is addressed in B5G-OPEN,

considering multiple options including exclusive or concurrent control.

- [physical layer impairments, PLI] Accounting for PLI is critical to efficiently plan and

operate optical networks and high data rates, with increasing non-linear effects. When

considering the extension to wide-band, such parameters can be specific to certain

frequency bands and one can no longer assume uniform channel behaviour.

- [telemetry] The scope of the SDN no longer covers exclusively device / system control

and configuration aspects but extends to optical monitoring and telemetry, a key

enabled for advanced functions such as autonomous/autonomic networking via

hierarchical and coordinated closed loops. Streaming Telemetry protocols and

architectures such as gRPC/gNMI are increasingly being used to export telemetry data

from devices, providing flexibility in the definition of streams, filtering, and use cases.

- [external planning tools] Planning tools, including QoT estimators or path computation

and validation systems, need efficient access (in terms of retrieval, storage and

 D4.2 GA Number 101016663

2

processing) to collected and managed data. Algorithm inputs need to be modelled in an

efficient and scalable way, defining dynamic workflows with controlled and minimized

impact on service provisioning latency. Algorithmically, functional elements dedicated

to generalized Routing and Spectrum Assignment (RSA) or function placement are

needed and are expected to operate in hybrid off-line/on-line modes, e.g., dynamically,

used to compute/validate e.g

- [network automation] Aspects related to automation, zero touch networking and Intent

Based Networking (IBN) are developed in the areas of service deployment, network

planning and overall network operation. Outcomes related to automation in single

domains and later cross-domain automation (across technology layers or network

segments).

D4.2 complements the previous deliverable by specifying the Interfaces for such a modular

architecture, which must rely on standard and open interfaces between the control plane

functions and towards the devices.

After a short introduction regarding B5G-OPEN control plane, Section 2 details the set of

reference points and interfaces that have been adopted and extended to allow the different

functional components to interwork. Such interfaces are briefly introduced, and key usage paths

detailed, which have been used by implementors to ensure system interworking. Similarly, B5G-

OPEN has defined a generic telemetry platform enabling straightforward adaptations of devices

or systems as data sources.

Starting from Section 3, each component developed in WP4 is detailed. For each component,

the relevant sections provide a short introduction and description as well as the set of interfaces

it relies on and implements -- based on what has been detailed in Section 2 – as well as functional

validations that have been carried out, integrations between different components , and

updated roadmap compared to what it was defined in D4.1 and a set of individual component

Key Performance Indicators (KPIs) that have been evaluated or shall be evaluated in the scope

of WP4/WP5.

 D4.2 GA Number 101016663

3

2 B5G-OPEN INTERFACES AND PROTOCOLS

This section provides an overview of the main interfaces and protocols that are considered for

the interactions between B5G-OPEN control plane components and towards external systems

(such as Operational Support Systems) and Network devices (including the prototypes

developed by WP3).

2.1 OPENCONFIG FOR PACKET AND OPTICAL DEVICES
The OpenConfig project [OpenConfig] is a collaborative effort by network operators to develop

interfaces and tools for managing networks in a dynamic, vendor-neutral way. Thus, its models

are periodically updated. All OpenConfig models are available on github [OpenConfig]. The

OpenConfig information model is composed by a set of abstract modules. Each one is composed

by a set of YANG models and represents a specific capability and features of a network device,

such as HW components hierarchy, interfaces, OSPF configuration, QoS, among others.

The main modules used for Packet and Optical SDN operations are the following:

Platform:

• Platform - openconfig-platform.yang – It constitutes the main model to define

the hardware components of a network device.

• CPU - openconfig-platform-cpu.yang – It augments the platform model to add

specific parameters of a CPU component.

• FAN - openconfig-platform-fan.yang – It augments the platform model to add

specific parameters of a FAN component.

• LINECARD - openconfig-platform-linecard.yang – It augments the platform

model to add specific parameters of a Linecard component.

• PORT - openconfig-platform-port.yang – It augments the platform model to add

specific parameters of a port component.

• PSU - openconfig-platform-psu.yang – It augments the platform model to add

specific parameters of a PSU (Power Suply Unit) component.

• TRANSCEIVER - openconfig-platform-transceiver.yang – It augments the

platform model to add specific parameters of a Transceiver component.

• Platform Types - openconfig-platform-types.yang – It defines the types used to

define the parameters in the platform module parameters.

Optical-Transport:

• Terminal Device - openconfig-terminal-device.yang – It defines the main model to define

a terminal optics device.

• Optical Transport Types - openconfig-transport-types.yang – It defines the types used

to define the parameters in the optical transport module parameters.

Terminal device manifest

OpenConfig has defined the manifest files, a special type of model which is not configuration

nor operation. A remote controller requires some data from the transceiver in order to perform

optical planning and impairment validation of the end-to-end transmission across an Optical

Line System (OLS). When a pluggable module is recognized by a terminal device (which can be a

transponder or a packet-optical box), the operational mode datastore is updated.

 D4.2 GA Number 101016663

4

• Operational-mode-capabilities: this set of attributes contains all characteristic

information of the signal (modulation format, FEC, bit rate...), relevant information for

the physical impairment validation (OSNR Rx sensitivity, CD/PMD tolerance and

penalties).

• Optical-channel-config-value-constrains: Contains the transmission configuration

constrains/ranges of the optical-channel's attributes characterized by the operational-

mode, i.e., the central frequency range, the frequency grid and the configurable

transmitted power.

Figure 2-1 Hierarchy of components of an open terminal device

The structure of the OpenConfig component hierarchy is shown in Figure 2-1. The main modules

that are required for packet (IP/MPLS) control are:

bgp: This set of modules describe the BGP protocol configuration. They are used in the service-

related use cases to handle the BGP protocol and to support IP Connectivity.

interfaces: Model for managing network interfaces and sub interfaces. For the use cases that

are currently defined, it is used to configure the line side interfaces after setting up the optical

connectivity.

local-routing: This module describes configuration and operational state data for routes that are

locally generated, i.e., not created by dynamic routing protocols. It can be used with network-

instances to configure the static routes.

network-instance: The network instance is an abstraction of a packet forwarding device. It may

be a Layer 3 forwarding construct such as a virtual routing and forwarding (VRF) instance or the

Global routing instance. A Layer 2 instance such as a virtual switch instance (VSI) and Mixed

Layer 2 and Layer 3 instances are also supported. The network instance works in conjunction

with other modules such as:

 D4.2 GA Number 101016663

5

o Interfaces

o VLANs

o Potocols

2.1.1 Device discovery Workflow

2.1.1.1 Retrieve Components

The first operation that the controller needs to perform over an open terminal device or a

packet/optical device with coherent pluggable modules is to retrieve the list of components. In

principle, the structure of both types of devices need to follow the OpenConfig platform model

(explained in the previous section).

<get>
 <filter type="subtree">
 <components xmlns="http://openconfig.net/yang/platform">
 </components>
 </filter>
</get>

The retrieve operation is implemented with the get NETCONF message as reported above.

Obtained reply message allows to discover all generic details of the device such as the device

model, the manufacturer, the software version and so on. Moreover, the same reply also

contains all the details regarding the device interfaces. Thus, parsing such information is

possible, at the SDN controller, to fill-up the list of ports supported by the device, including their

details, for instance the supported bitrate for the packet ports and the tunability range for

optical ports.

A component of type PORT with a sub-component of type TRANSCEIVER is identified as a client

port of the terminal device. A component of type PORT with a sub-component of type

OPTICAL_CHANNEL is identified as a line port of the terminal device.

2.1.1.2 Listing Operational Modes

<get>
 <filter type="subtree">
 <operational-modes xmlns="http://openconfig.net/yang/platform">
 </components>
 </filter>
</get>

In the current OpenConfig standard, the supported operational modes are defined at the level

of the device and are not associated with specific interfaces. The get NETCONF message

reported above can be used to retrieve the details regarding all operational modes supported

by a device. Each operational mode is identified by an ID. In WP3, B5G-OPEN has defined a way

of characterizing the operational modes, as detailed later in the different components of this

document.

 D4.2 GA Number 101016663

6

2.1.2 Configuration of the Optical Channel

After discovery of the device details, the configuration of an optical channel can be executed by

the SDN controller. Specifically, this phase involves the configuration of source and destination

transponders and all intermediate ROADMs. In case the end-points of the optical channel are

coherent pluggables located in IPoWDM nodes, the control plane implementation considered

by B5G-OPEN assumes that the Optical SDN controller also performs the configuration of the

coherent pluggable parameters.

The request of a new optical channel is received by the ONOS SDN controller on its NBI interfaces

that has been mainly inherited from the METRO-HAUL project, but it has been extended in B5G-

OPEN to support the utilization of flexi-grid and multi-band optical channels. The request is

typically submitted including a suggested path and frequency slot (e.g., previously computed by

QoT evaluation tools).

The configuration is performed in three subsequent phases. 1) The configuration of the

OPTICAL_CHANNEL component. Where three are the parameters to be configured, i.e., the

central frequency, the target output power and the operational mode.

<edit-config>
 <components xmlns='http://openconfig.net/yang/platform’>”
 <component>
 <name>channel-12</name>
 <optical-channel xmlns:oc-opt-term='http://openconfig.net/yang/terminal-device’>
 <config>
 <frequency>193100</oc-opt-term:frequency>
 <target-output-power>1.0</oc-opt-term:target-output-power>
 <operational-mode>100</oc-opt-term:operational-mode>
 <line-port>port-12</oc-opt-term:line-port>
 </config>
 </optical-channel>
 </component>
 </components>
</edit-config>

2) The configuration of the LOGICAL_CHANNEL, mainly due to activate the interface.

<edit-config>
 <terminal-device xmlns='http://openconfig.net/yang/terminal-device’>”
 <logical-channels>
 <channel>
 <index>12</index>
 <config>
 <admin-state>ENABLED</admin-state>
 </config>
 </channel>
 </logical-channels>
 <terminal-device>
</edit-config>

3) The configuration of the assignment between a client port and a line port.

 D4.2 GA Number 101016663

7

<edit-config>
 <terminal-device xmlns='http://openconfig.net/yang/terminal-device’>”
 <logical-channels>
 <channel>
 <index>client-port-index</index>
 <config>
 <admin-state>ENABLED</admin-state>
 </config>
 <logical-channel-assignments>
 <assignment>
 <index>1</index>
 <config>
 <logical-channel>logical-channel-id</logical-channel>
 <allocation>1</allocation>
 </config>
 <assignment>
 <logical-channel-assignment>
 </channel>
 </logical-channels>
 <terminal-device>
</edit-config>

2.1.3 Operational Mode Extensions for Physical Layer Characterization

In cooperation with B5G-OPEN WP3, WP4 has defined a set of attributes and properties that

extend an operational mode in such a way that clients may retrieve the specific physical layer

information associated with that transmission mode. This has been accomplished by extending

the OpenConfig Yang modules in two different files:

openconfig-terminal-device-properties.yang

openconfig-terminal-device-property-types.yang

Mainly, these files contain a module to extend OpenConfig terminal device's operational modes'

data. It supports operational modes for one Optical Channel, with a single OTSi. The operational

mode includes key attributes such modulation format, symbol rate, nominal central frequency

(NFC) tunability constraints (grid, min/max NCF), FEC gain, minimum and maximum output

power of the transmitter or minimum OSNR at the receiver as well as the spectrum width of the

OTSi (OTSiMC). It also includes (optional) aspects such as filter characterization, CD and DGD

tolerance. The module is captured in the following Yang fragment:

module: openconfig-terminal-device-properties
 +--ro operational-modes
 +--ro mode-descriptor* [mode-id]
 +--ro mode-id -> ../state/mode-id
 +--ro state
 | +--ro mode-id? uint16
 | +--ro mode-type? identityref
 +--ro G.698.2
 | +--ro state
 | +--ro standard-mode? oc-opt-term-prop-types:standard-mode
 +--ro explicit-mode
 +--ro operational-mode-capabilities
 | +--ro state
 | | +--ro modulation-format? union
 | | +--ro bit-rate? oc-opt-term-prop-types:bit-

 D4.2 GA Number 101016663

8

rate
 | | +--ro baud-rate? decimal64
 | | +--ro optical-channel-spectrum-width? decimal64
 | | +--ro min-tx-osnr? decimal64
 | | +--ro min-rx-osnr? decimal64
 | | +--ro min-input-power? decimal64
 | | +--ro max-input-power? decimal64
 | | +--ro max-chromatic-dispersion? decimal64
 | | +--ro max-differential-group-delay? decimal64
 | | +--ro max-polarization-dependent-loss? decimal64
 | +--ro fec
 | | +--ro state
 | | +--ro fec-coding? union
 | | +--ro coding-overhead? decimal64
 | | +--ro coding-gain? decimal64
 | | +--ro pre-fec-ber-threshold? decimal64
 | +--ro penalties
 | | +--ro penalty* [parameter-and-unit up-to-boundary]
 | | +--ro parameter-and-unit -> ../state/parameter-and-unit
 | | +--ro up-to-boundary -> ../state/up-to-boundary
 | | +--ro state
 | | +--ro parameter-and-unit? oc-opt-term-prop-types:impairment-
type
 | | +--ro up-to-boundary? decimal64
 | | +--ro penalty-value? decimal64
 | +--ro filter
 | +--ro state
 | +--ro pulse-shaping-type? union
 | +--ro roll-off? decimal64
 +--ro optical-channel-config-value-constraints
 +--ro state
 +--ro min-central-frequency? oc-opt-types:frequency-type
 +--ro max-central-frequency? oc-opt-types:frequency-type
 +--ro grid-type? oc-opt-term-prop-types:grid-type
 +--ro adjustment-granularity? oc-opt-term-prop-types:adjustment-
granularity
 +--ro min-channel-spacing? decimal64
 +--ro min-output-power? decimal64
 +--ro max-output-power? decimal64

For example, a client may request the details of a given Operational mode by asking for the

mode descriptor providing the mode-id (e.g., 100) using standard NETCONF/Yang as seen next:

The OpenConfig Terminal device is able to reply with the detailed properties of the requested

operational mode:

 D4.2 GA Number 101016663

9

This module extension has been added to the B5G-OPEN SBVT agent component as will be

detailed later in the document. The ONOS SDN controller is responsible for mapping the

information about Operational modes into its NBI to be consumed and queried by the TAPI

Network Orchestrator.

 D4.2 GA Number 101016663

10

2.2 P4 AND P4 RUNTIME

Figure 2-2 P4 development workflow [https://p4.org/]

P4 is a domain-specific language for network devices that defines how data plane devices

(switches, NICs, routers, filters, etc.) process packets. P4 [P4] is an open-source project whose

goal is to develop and define the tools needed to work with P4 forwarding concepts (e.g.,

specifications, compiler, interfaces, etc.) in order to enable next-generation SDN. The

tools/applications developed in the project are maintained in [P4lang] GitHub repository. Figure

2-2 shows the P4 development workflow required to program and install a P4 pipeline and

control it via an SDN controller. More in detail, a P4 program allows to implement a custom

pipeline supporting configurable match-action tables and packet headers, metadata extraction,

programmable actions, and stateful data structures. The P4 compiler generates an executable

file for the target data plane and the runtime mapping metadata to allow the communication

among control and data planes.

The P4Runtime API is a remote procedure call (RPC) interface used by the control plane for

managing a P4 device where a custom pipeline is installed. After a detailed analysis, P4 language

and P4Runtime perfectly fit the requirements for managing and control the packet optical node

in the BG5-OPEN project. Indeed, the possibility to perform in-network operations opens the

way to new applications and functionalities to be operated at wire-speed. The B5G-OPEN

deliverable D3.1 reports an example of optical monitoring parameters included within telemetry

packets that are processed by the P4 ASIC for fast recovery.

P4 Runtime commonly uses gRPC [gRPC] as its underlying transport protocol. gRPC uses Protocol

Buffers (Protobuf) for serialization, making it efficient and compact. The P4 Runtime Protocol

defines a set of standardized operations that the controller can perform on the P4 data plane.

These operations typically include:

 D4.2 GA Number 101016663

11

• Read: The controller can request information from the P4 node, such as the current

state of tables, counters, and meters.

• Write: The controller can send configuration commands to the P4 node to add, modify,

or delete table entries, change pipeline stages, update counters, and more.

• Asynchronous Notifications: P4 Runtime supports asynchronous notifications, allowing

the P4 node to inform the controller of events or changes in real-time, such as packet

drops, updates to counters, or hardware-specific events.

• Fine-Grained Control: P4 Runtime provides fine-grained control over the configuration

of P4 devices. This means the controller can specify detailed rules for packet processing,

define how tables should be populated, and manage the pipeline stages to achieve

specific networking behaviours.

• Versioning: P4 Runtime includes versioning support to ensure compatibility between the

controller and the P4 device. This helps prevent issues that might arise when the

controller and device have different understandings of the protocol.

• Authentication and Security: Like any network protocol, security is a concern. P4

Runtime can incorporate authentication and security mechanisms to ensure that only

authorized controllers can configure and control the P4 data plane.

• Vendor Neutrality: P4 Runtime aims to be vendor-neutral, allowing controllers to work

with a variety of P4-enabled devices from different manufacturers without needing

specific adaptations for each vendor's hardware.

• Dynamic Updates: P4 Runtime is designed to support dynamic updates of the data plane

configuration. This means that the controller can adjust configurations in real-time to

adapt to network changes, traffic patterns, and security requirements.

2.3 TRANSPORT API (TAPI) FOR TOPOLOGY MANAGEMENT AND SERVICE PROVISIONING
The TAPI Optical Network Orchestrator, as an SDN controller, provides Network Topology and

Connectivity Request services to a parent SDN Controller or another T-API-able user. It is mainly

responsible for the offering of DSR connectivity services between optical transponders that are

connected to the ROADMs. The transport protocol used for all operations on the NBI is

RESTCONF [RFC8040]. It is an HTTP-based protocol that provides a programmatic interface for

accessing data defined in YANG, which is the language T-API is defined in. The key YANG models

composing the T-API information models are to be based either in the current version 2.1.3 [TR-

547], including the following modules:

- tapi-common.yang ,

- tapi-connectivity.yang ,

- tapi-dsr.yang

- tapi-topology.yang

- tapi-connectivity.yang

- tapi-path-computation.yang

2.3.1 Generic Aspects

T-API is based on a context relationship between a server and a client. A Context is an abstraction

that allows for logical isolation and grouping of network resource abstractions for specific

purposes/applications and/or information exchange with its users/clients over an interface. It is

understood that the APIs are executed within a shared Context between the API provider and

its client application. A shared Context models everything that exists in an API provider to

support a given API client. The T-API server tapi-common:context includes the following

 D4.2 GA Number 101016663

12

information: The set of Service Interface Points (SIP) exposed to the TAPI client applications

representing the available customer-facing access points for requesting network services.

This set must allow Connectivity Service (CS) creation at the DSR Layer, a topology-context which

includes one or more top-level Topology objects which are dynamic representations of the

network, and connectivity-context which includes the list of Connectivity-Service and

Connection objects created within the TAPI Context.

Adopting TAPI allows a standard and mature way to interact with SDN controllers for optical

networks, as specified in OOPT MUST [MUST]. In particular, the figure below (Figure 2-3) shows

a common representation of an optical network using TAPI terminology and convention.

Figure 2-3 TAPI representation of a digital service between pluggables across an optical network

2.3.2 General Remarks

This document does not report or mandate direct access to all data nodes defined by the YANG

models. This section captures a minimal set of objects which shall provide full CRUD support

according to the TAPI YANG model’s specification (e.g., configurable objects should support all

operations while non configurable objects shall support retrieval).

API Entry RESTCONF
Operations
allowed

Notes

/tapi-common:context
Used to retrieve the whole TAPI Context
May present scalability issues.

GET

/tapi-common:context/service-interface-point={uuid}
Retrieve the list of Service Interface Points

GET

/tapi-common:context/tapi-topology:topology-context/topology={uuid}
Retrieve a full topology, including the details in terms of links and nodes.

GET

/tapi-common:context/tapi-topology:topology-
context/topology={uuid}/node={uuid}
Retrieve a specific node.

GET

/tapi-common:context/tapi-topology:topology-
context/topology={uuid}/node={uuid}?fields=owned-node-edge-
point(uuid)
Retrieve all NEPs (node edge point) of a given node.

GET

/tapi-common:context/tapi-topology:topology-
context/topology={uuid}/link={uuid}

GET

OTS_MEDIA

OTS_MEDIA

OMS

OMS

MC

MC

OTSiMC

OTSiMC
(+OTSi PAC) MC Top Connection (a/d to a/d port)

OTSiMC Top Connection (line to line port)

OMS
Top Connection with Pools

OTS_MEDIA
Top Connection

(deg to amp port)

OTS_MEDIA
Top Connection

(amp to deg port)

OTS_MEDIA
Top Connection
(a/d to line port)

OTS_MEDIA
Top Connection
(line to a/d port)

 D4.2 GA Number 101016663

13

Retrieve a specific link.

/tapi-common:context/tapi-topology:topology-
context/topology={uuid}/node={uuid}/owned-node-edge-point={uuid}
Retrieve a Specific NEP

GET

/tapi-common:context/tapi-topology:topology-
context/topology={uuid}/node={uuid}/owned-node-edge-
point={uuid}/tapi-connectivity:cep-list
Retrieve the list of CEPs over a given NEP.

GET

/tapi-common:context/tapi-topology:topology-
context/topology={uuid}/node={uuid}/owned-node-edge-
point={uuid}/tapi-connectivity:cep-list/connection-end-point={uuid}
Retrieve a specific CEP.

GET

/tapi-common:context/tapi-connectivity:connectivity-context
Retrieve the whole connectivity Context.
May present scalability issues.

GET/POST GET for
retrieval.

POST for
Provisioning

/tapi-common:context/tapi-connectivity:connectivity-context/connectivity-
service={uuid}
Retrieve a specific Connectivity Service

GET

/tapi-common:context/tapi-connectivity:connectivity-
context/connection={uuid}
Retrieve a Specific Connection

GET

2.3.3 Context & Service Interface Points discovery

The TAPI Context and Service Interface Points (SIPs) are the relevant network service

information required before any connectivity-service creation operation.

The discovery of this information is intended to be requested periodically and/or on-demand

basis, proactively from the TAPI client role, to synchronize the context information. It is possible

to retrieve the whole set of SIPs, or the specific details of a given SIP. As it can be seen in the

example below, the SIPs are defined for the Digital Signal Rate (DSR) network layer, so a client

such as the B5G-ONP can ask a DSR for K Gb/s between two of such SIPs.

2.3.3.1 Example

GET http://localhost:4900/restconf/data/tapi-common:context/service-interface-
point"

GET http://localhost:4900/restconf/data/tapi-common:context/service-interface-
point=b71052b2-fc83-5cb5-b39e-9fd226a2042d

Response:

{
 "tapi-common:service-interface-point": [
 {
 "administrative-state": "UNLOCKED",
 "direction": "BIDIRECTIONAL",
 "layer-protocol-name": "DSR",
 "name": [
 {
 "value": "Transp-4_port_11003-floating",
 "value-name": "cttc.ols.port"

http://localhost:4900/restconf/data/tapi-common:context/service-interface-point
http://localhost:4900/restconf/data/tapi-common:context/service-interface-point
http://localhost:4900/restconf/data/tapi-common:context/service-interface-point=b71052b2-fc83-5cb5-b39e-9fd226a2042d
http://localhost:4900/restconf/data/tapi-common:context/service-interface-point=b71052b2-fc83-5cb5-b39e-9fd226a2042d

 D4.2 GA Number 101016663

14

 },
 {
 "value": "4294956292",
 "value-name": "cttc.ols.ifid"
 },
 {
 "value": "10.100.101.24:4294956292",
 "value-name": "cttc.gmpls.ifid"
 },
 {
 "value": "Transp-4_port_11003-sip",
 "value-name": "service-port-name"
 },
 {
 "value": "Transp-4_port_4294956292-sip",
 "value-name": "local-name"
 }
],
 "operational-state": "ENABLED",
 "supported-layer-protocol-qualifier": [
 "tapi-dsr:DIGITAL_SIGNAL_TYPE_UNSPECIFIED"
],
 "uuid": "b71052b2-fc83-5cb5-b39e-9fd226a2042d"
 },

2.3.4 Topology Discovery

The TAPI Topology is the relevant network logical representation information required for

inventory, traffic-engineering, or provisioning purposes. The discovery of this information is

intended to be requested periodically and/or on-demand basis, proactively from the TAPI client

role, to synchronize the context information.

topology /tapi-common:context/tapi-topology:topology-context/topology

Attribute Allowed Values/Format

uuid As per RFC 4122

layer-protocol-
name

Leaf-List including the present Layer Protocol Names in the topology. They MUST be elements from
{"DSR", "DIGITAL_OTN", "PHOTONIC_MEDIA"}

link List of {link} objects, as defined in [TR-547]

node List of {node} objects as defined in [TR-547]

2.3.4.1 Example

GET http://localhost:4900/restconf/data/tapi-common:context/tapi-
topology:topology-context/topology

GET http://localhost:4900/restconf/data/tapi-common:context/tapi-
topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df

Response:

{
 "tapi-topology:topology" : [
 {
 "layer-protocol-name" : [
 "PHOTONIC_MEDIA",
 "DSR"
],
 "link" : [
 {
 "cost-characteristic" : [
 {
 "cost-name" : "te-metric",
 "cost-value" : "1.000000"
 }
],
 "direction" : "UNIDIRECTIONAL",

http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df

 D4.2 GA Number 101016663

15

 "layer-protocol-name" : [
 "PHOTONIC_MEDIA"
],
 "name" : [
 {
 "value" : "link_10.100.101.13:31-10.100.101.14:32",
 "value-name" : "local-name"

(...)

2.3.5 Retrieve a Link

This all aims at retrieving a Link’s characteristics provided its uuid in the request (within the

topology that contains such link).

2.3.5.1 Example

GET http://localhost:4900/restconf/data/tapi-common:context/tapi-
topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-
1139dc46e9df/link=ce850f8e-b521-517a-8074-60546bde5b92

Response:

{
 "cost-characteristic": [
 {
 "cost-name": "te-metric",
 "cost-value": "1.000000"
 }
],
 "direction": "UNIDIRECTIONAL",
 "layer-protocol-name": [
 "PHOTONIC_MEDIA"
],
 "name": [
 {
 "value": "netconf:10.100.101.14:2022",
 "value-name": "dst.device"
 },
 {
 "value": "32",
 "value-name": "dst.port"
 },
 …
],
 "node-edge-point": [
 {
 "node-edge-point-uuid": "9dced988-a521-5a00-a9ee-2c80756df9ad",
 "node-uuid": "1479f1cf-f22f-51e6-a531-66fa98af719b",
 "topology-uuid": "d457ae3f-56f0-5abe-8d5b-1139dc46e9df"
 },
 {
 "node-edge-point-uuid": "4182743d-0b0f-51ea-b0db-3636b855d9f7",
 "node-uuid": "92679803-da09-50a5-baef-5f41eafe0405",
 "topology-uuid": "d457ae3f-56f0-5abe-8d5b-1139dc46e9df"
 }
],
 "uuid": "ce850f8e-b521-517a-8074-60546bde5b92"
}

2.3.6 Retrieve a Node

This all aims at retrieving a Node’s characteristics provided its UUID.

http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df/link=ce850f8e-b521-517a-8074-60546bde5b92
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df/link=ce850f8e-b521-517a-8074-60546bde5b92
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df/link=ce850f8e-b521-517a-8074-60546bde5b92

 D4.2 GA Number 101016663

16

2.3.6.1 Example
GET http://localhost:4900/restconf/data/tapi-common:context/tapi-
topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-
1139dc46e9df/node=1479f1cf-f22f-51e6-a531-66fa98af719b

Response:

{
 "name": [
 {
 "value": "ROADM-3",
 "value-name": "clli"
 },
 ...],
 "owned-node-edge-point": [
 {
 "direction": "SOURCE",
 "layer-protocol-name": "PHOTONIC_MEDIA",
 "name": [
 {
 "value": "ROADM-3_port_21",
 "value-name": "local-name"
 },
 ...

2.3.7 Creating a Service

To create a connectivity service, the client sends a POST providing the UUID and the Attributes

Example:

POST http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-
connectivity:connectivity-context

{
 "tapi-connectivity:connectivity-service" : [
 {
 "connectivity-constraint" : {
 "connectivity-direction" : "BIDIRECTIONAL",
 "requested-capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 400
 }
 }
 },
 "direction" : "BIDIRECTIONAL",
 "end-point" : [
 {
 "direction:" : "BIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "LAYER_PROTOCOL_QUALIFIER_UNSPECIFIED",
 "local-id" : "8eb843ff-ea74-5b5d-a8c0-661673b6c823",
 "service-interface-point" : {
 "service-interface-point-uuid" : "8eb843ff-ea74-5b5d-a8c0-661673b6c823"
 }
 },
 {
 "direction:" : "BIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "LAYER_PROTOCOL_QUALIFIER_UNSPECIFIED",
 "local-id" : "7c09f268-6b42-5c30-b02a-b8b54a0ff7c5",
 "service-interface-point" : {
 "service-interface-point-uuid" : "7c09f268-6b42-5c30-b02a-b8b54a0ff7c5"
 }
 }
],
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "LAYER_PROTOCOL_QUALIFIER_UNSPECIFIED",
 "requested-capacity" : {

http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df/node=1479f1cf-f22f-51e6-a531-66fa98af719b
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df/node=1479f1cf-f22f-51e6-a531-66fa98af719b
http://localhost:4900/restconf/data/tapi-common:context/tapi-topology:topology-context/topology=d457ae3f-56f0-5abe-8d5b-1139dc46e9df/node=1479f1cf-f22f-51e6-a531-66fa98af719b
http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context
http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context

 D4.2 GA Number 101016663

17

 "total-size" : {
 "unit" : "GBPS",
 "value" : 400
 }
 },
 "route-objective-function" : "26000",
 "uuid" : "d71187bc-2947-11e8-b467-0ed5f89f718b"
 }
]
}

Response: 201 Created
Location

2.3.8 Retrieval of Connectivity Service and Connections

These calls are used to retrieve the data of existing connectivity services and connections.

Examples:

GET http://localhost:4900/restconf/data/tapi-common:context/tapi-
connectivity:connectivity-context/connectivity-service

2.3.9 Service Deletion

To proceed with a service deletion, the client sends a delete request specifying the UUID of the

Connectivity service to delete.

Example:

DELETE http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-
connectivity:connectivity-context/connectivity-service=aaaaaaaa-aaaa-aaaa-
aaaa-aaaaaaaaaaaa

2.4 PATH COMPUTATION (TAPI) FOR EXTERNALIZED PATH COMPUTATION
B5G OPEN has adopted the TAPI (Transport API) architecture [TR-547], and as such, the OPCE

element is a module that can assist the TAPI Optical Network Orchestrator for computing the

optical path e.g., in the provisioning process. More than one OPCE implementations can be used,

by different partners, e.g., during the EUCNC2023 and ECOC2023 the Multi-Band Path

Computation Engine (MB-PCE) was used as OPCE. In addition, other implementations can be

realised which can be included inside the B5G-ONP, or external to it, with different capabilities.

The interaction between the OPCE and the TAPI Optical Network Orchestrator follows TAPI

standards (TAPI version 2). Figure 2-4 shows an exemplified sequence of messages in a typical

interaction based on [TR-547].

http://localhost:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context/connectivity-service
http://localhost:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context/connectivity-service
http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context/connectivity-service=aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa
http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context/connectivity-service=aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa
http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context/connectivity-service=aaaaaaaa-aaaa-aaaa-aaaa-aaaaaaaaaaaa

 D4.2 GA Number 101016663

18

Figure 2-4 Exemplified TAPI Optical Network Orchestrator -.OPCE interaction.

 Alternatively, to ease integration between components, we have opted for the RPC version, as

shown below. The TAPI Network Orchestrator requests a Path Computation:

URI http://127.0.0.1:4901/restconf/operations/tapi-path-computation:compute-p-2-p-path/

Input:

{
 "end-point" : [
 {
 "capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 50
 }
 },
 "direction" : "BIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "tapi-dsr:DIGITAL_SIGNAL_TYPE",
 "local-id" : "Z",
 "service-interface-point" : {
 "service-interface-point-uuid" : "8eb843ff-ea74-5b5d-a8c0-661673b6c823"
 }
 },
 {
 "capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 50
 }
 },
 "direction" : "UNIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "tapi-dsr:DIGITAL_SIGNAL_TYPE",
 "service-interface-point" : {
 "service-interface-point-uuid" : "7c09f268-6b42-5c30-b02a-b8b54a0ff7c5"
 }
 }

http://127.0.0.1:4901/restconf/operations/tapi-path-computation:compute-p-2-p-path/

 D4.2 GA Number 101016663

19

],
 "layer-protocol-name" : "DSR",
 "objective-function" : {
 "local-id" : "26000"
 }
}

Output:
{
 "tapi-path-computation:output" : {
 "service" : {
 "end-point" : [
 {
 "capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 50
 }
 },
 "direction" : "BIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "tapi-dsr:DIGITAL_SIGNAL_TYPE",
 "local-id" : "Z",
 "service-interface-point" : {
 "service-interface-point-uuid" : "8eb843ff-ea74-5b5d-a8c0-661673b6c823"
 }
 },
 {
 "capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 50
 }
 },
 "direction" : "UNIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "tapi-dsr:DIGITAL_SIGNAL_TYPE",
 "service-interface-point" : {
 "service-interface-point-uuid" : "7c09f268-6b42-5c30-b02a-b8b54a0ff7c5"
 }
 }
],
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "tapi-dsr:DIGITAL_SIGNAL_TYPE",
 "path" : {
 "link" : [
 {
 "link-uuid" : "5b9faf19-a756-57da-8482-44dcf29d3acd",
 "topology-uuid" : "d457ae3f-56f0-5abe-8d5b-1139dc46e9df"
 },
 {
 "link-uuid" : "0c519695-ab02-5ffd-b0d4-0a5cc005bad3",
 "topology-uuid" : "d457ae3f-56f0-5abe-8d5b-1139dc46e9df"
 },
 {
 "link-uuid" : "8c2a8c52-10c8-508f-979f-7e543437347c",
 "topology-uuid" : "d457ae3f-56f0-5abe-8d5b-1139dc46e9df"
 }
],
 "mc-pool" : {
 "available-spectrum" : [
 {
 "frequency-constraint" : {
 "adjustment-granularity" : "G_6_25GHZ",
 "grid-type" : "FLEX"
 },
 "lower-frequency" : 184525000,
 "upper-frequency" : 184625000
 }
]
 },
 "path-uuid" : "0e47cccf-2fb0-48c5-a3be-a921c3df65db"
 }
 }
 }
}

 D4.2 GA Number 101016663

20

2.5 ONOS REST-BASED APIS
The ONOS controller [ONOS, ONOS-metro] includes a wide set of northbound REST APIs

providing GET/POST/DELETE methods towards the network [ONOSREST]. For example, GET

methods can be used to retrieve information about the network topology or about the current

configuration of ONOS applications (NetApps) running on the controller. Similarly, POST and

DELETE methods can be used to interact with the network devices and the network applications,

e.g., sending new configuration to the network devices or modifying actual values of NetApps

parameters.

These interfaces have been extended to integrate the optical controller within the B5G-OPEN

control plane, specifically the interfaces will be consumed by TAPI orchestrator. Such interfaces

have been extended for enabling retrieval of optical resource utilization (e.g., supported and

available frequency slots) and optical physical parameters to be used by upper control plane

components.

The Optical Network Model REST APIs is a NetApp included in the master distribution on the

ONOS controller that, before B5G-OPEN, was only providing a GET/POST/DELETE methods for

the management of optical intents. In particular, the GET method is used to retrieve the list of

established optical intents, the POST method is used to submit an intent request to the network,

and the DELETE method is used to withdraw an intent.

Such NetApp has been extended and now provides four different menus for the management

of: optical intents, optical links, optical nodes and operational modes. Such extended version of

the NetApp will be released to the ONOS community before the end of the B5G-OPEN project.

Figure 2-5: main menu of NetApp Optical Network Model REST APIs

2.5.1 Operational Modes

The operational modes menu has been implemented to export the available operational modes

toward the T-API orchestrator. At the same time, the ONOS controller has been extended in the

SBI to properly acquire the supported operational modes, and the related description, from the

connected devices.

 D4.2 GA Number 101016663

21

Figure 2-6: Operational Modes REST APIs.

Among the implemented methods the ones that are relevant to the network operation are the

two GET methods, while other methods have been implemented to facilitate debugging

operation during development.

2.5.1.1 Operational Modes – GET details

This method provides the list of operational modes supported in the network.

Figure 2-7: Response to GET opmodes

2.5.1.2 Operational Mode – GET details

This method provides all the details regarding the operational mode that is specified as input.

 D4.2 GA Number 101016663

22

The details are the ones loaded from the OpenConfig model of the device at the time of device

discovery and are compliant with the OpenConfig version 0.1.0.

2.5.2 Intents

The intents menu was already available before the starting of the project (it has been developed

during the METRO-HAUL project) [ONOS-metro]. However, some further extensions to these

interfaces have been introduced during B5G-OPEN.

 D4.2 GA Number 101016663

23

Figure 2-8: intents REST APIs.

2.5.2.1 Intents – POST details

The POST method is used to submit an intent request to the network. It allows to specify the

following parameters:

• End-points of the intent: these are specified through the device id and the port id. The

specified device should be of type TERMINAL_DEVICE (i.e., a transponder), while the

specified ports should be of type OCH (i.e., the line port of a transponder) or of type

ODU_CLT (i.e., the client port of a transponder). During B5g-OPEN, an extension to this

point has been introduced for enabling the activation of optical intents

initiating/terminating at OCH ports of a ROADM devices.

• Bidirectional: it is a boolean flag that is set to true if the required intent has to be

established bidirectionally.

• Signal: this field allows to specify the optical channel to be used for the intent. During

B5G-OPEN this field has been extended to support the specification of channels using

flex-grid, also considering multi-bands (i.e., L, C and S bands).

• Suggested path: this field allows to specify the path that should be followed by the

intent. This is specified as a sequence of links. In case of bidirectional intents, the

reverted path is applied in the opposite direction.

 D4.2 GA Number 101016663

24

Figure 2-9 Example of POST intent method.

2.5.2.2 Intents – GET details

The GET method is used to retrieve information regarding the intent requests that have been

submitted by the controller. An example of the response reply is provided in the following figure.

Among the information that are provide as a response it important to mention the state that is

related to the Finite State Machine modelling the intents in ONOS. It can assume the following

self-explaining values: REQUESTED, INSTALLING, INSTALLED, FAILED, WITHDRAWING,

WITHDRAWN, CORRUPTED. When an intent is in the state FAILED, the controller keep periodically

trying to recover the intent.

 D4.2 GA Number 101016663

25

2.5.2.3 Intents – DELETE details

The GET method is used to withdraw an intent. It requires to specify the intent id and the

application that originally installed the intent.

 D4.2 GA Number 101016663

26

2.5.3 Links

The links menu provides information regarding the characteristics of fibre links (e.g., fibre

length) that can be relevant for the computation of physical impairments executed by upper

layers tools. Also, this interface provides details regarding the frequency slots that are supported

and available/unavailable by each fibre link.

Figure 2-10: links REST APIs.

Among the implemented methods, the relevant one for the network operation is the GET

methods: /links/perBandChannels. Other methods have been implemented to improve

presentation and facilitate debugging operation during development.

2.5.3.1 Links perBandChannels – GET details

This interface provides the basic topological references for each link, such as the end-points, the

type and the current state. Moreover, it provides the list of annotations where all the details

relevant for the physical impairment computation will be annotated. In the current version only

the length of the fibre is exposed. Finally, the interface provides, for each band the list of

registered and currently available channels.

In the lists of registered and available channels, each channel is described using the ONOS

encoding on the flexible grid as specified in G.694.1 (10/20) published by ITU-T. Thus, for

example the OchSignal{-251 x 6.25GHz +/- 6.25GHz} refers to a frequency slot:

central frequency: 193100 – 251*6.25 = 193100 – 1568.75 = 191531.25 GHz

 width: 6.25 * 2 = 12.5 GHz

The list of available channels is updated every time a new lightpath is established on such link.

 D4.2 GA Number 101016663

27

Figure 2-11: response body of GET perBandChahnnels

2.5.4 Nodes

The nodes menu provides information regarding the characteristics of optical nodes. This

interface is mainly devoted to export toward the T-API orchestrator the list of devices building

up the network.

Figure 2-12: nodes REST APIs.

Among the implemented methods the relevant one for the network operation is the GET

method. Other methods have been implemented to facilitate debugging operation during

development.

2.5.4.1 Nodes – GET details

The GET method provides the list of nodes including the node type (i.e., TERMINAL_DEVICE for

transponders and ROADM).

 D4.2 GA Number 101016663

28

Figure 2-13: Response body for GET nodes.

2.6 OPENROADM
[OpenROADM] is a Multi-Source Agreement initiative, active since 2015 and comprising several

network operators and optical system and component vendors. From the control plane

perspective, OpenROADM defines data models for device, network, and service modelling,

targeting the fully disaggregated network model. The device model covers detailed

configuration information, alarm, and performance monitoring and, as such, was chosen by the

METRO-HAUL project as the reference interface for ROADM devices. Recently, device models

have been extended opening to the “partial disaggregated” solution covering also trans-, mux-

and switch-ponders.

The METRO-HAUL project developed an OpenROADM driver for the ONOS SDN controller to

control ROADM devices. The driver is currently downloadable from the official ONOS repository

and available under the ODTN-driver section [ONOS]. During device discovery, ONOS retrieves

the number and type of ports together with their capabilities to feed its internal device

database. More specifically, the current driver collects the spectral feature of the ports reading

the <mc-capabilities> branch of the device datastore, available both for degrees and Shared Risk

Group (SRG, i.e., add/drop modules), performing a NETCONF <get> operation. However, <mc-

capabilities> allows modelling a single spectral band and cannot be instantiated more than once,

so that multi-band devices cannot be covered. Recent updates of the device model (starting

from v.7.0.0) address multi-band devices by a new top-level list named <mc-capabilities-profile>,

very similar to the old <mc-capability>, but that can be instantiated several times to describe

the different bands and can be referenced by ports, degrees and SRGs, as can be seen in the

following tree, extracted from the OpenROADM device model.

+--rw circuit-packs* [circuit-pack-name]
| +--rw circuit-pack-type
| +--
....

| +--rw ports* [port-name]
| +--rw port-name
| +--
| +--ro mc-capability-profile-name*
....
+--rw degree* [degree-number]
| +--rw degree-number
| +--
| +--ro mc-capability-profile-name*

 D4.2 GA Number 101016663

29

....
+--rw shared-risk-group* [srg-number]
| +--rw srg-number
| +--
| +--ro mc-capability-profile-name*

....
+--ro mc-capability-profile* [profile-name]
 | +--ro profile-name
 | +--ro center-freq-granularity?

 | +--ro min-edge-freq?
 | +--ro max-edge-freq?
 | +--ro slot-width-granularity?
 | +--ro min-slots?

 | +--ro max-slots?

Figure 2-14 Extract of OpenROADM tree for multiband support

All the leaves of the <mc-capability-profile> have clear meaning. Only min-slots and max-slots

deserve a short explanation: they are used to advertise the minimum and maximum number of

slots (as defined by the slot-width-granularity leaf) that can be used to form a spectral window.

For what concerns point-to-multipoint connections, as those needed by XR-optics, current

device model doesn’t cover them. Coverage for point-to-multipoint optical connections is not

yet in the scope of the MSA. Currently, the <roadm-connection> container allows creation of

both express and add-drop connections uniquely between one source and one destination

Network Media Channel (NMC) interface. Generally speaking, nothing prevents to have more

than one <roadm-connection> referencing the same NMC. However, this is not a shared solution

and may create interoperability issues. Alternatively, the container <roadm-connection> could

be extended to cover more source and destination NMC interfaces. However, this is not allowed

by the current device model.

2.7 INTERFACES FOR THE TELEMETRY PLATFORM
The telemetry system includes three different interfaces:

REDIS

We rely on Redis as a demarcation point between data sources and the telemetry system.

Telemetry data generated by data sources are encapsulated as JSON objects and published in a

Redis database. In particular, the RedisJSON module that provides JSON support for Redis is

used. RedisJSON lets store, update, and retrieve JSON values in a Redis database, similar to any

other Redis data type. The publish/subscribe paradigm is used to decouple data sources

(publishers) from subscribers aimed at reaching good scalability and achieving dynamic

messaging routing. The publish/subscribe implementation of Redis ensures the delivery to all

the subscribers interested in the topic and offers four models of communication: one-to-one,

one-to-many, many-to-one and many-to-many. In particular, the Telemetry system relies on the

one-to-many publish/subscribe model.

An example of JSON object exchanged among components is presented next.

{
"header": {
"sender": "dataSource-1",
"receiver": "telemetryProcessor"
},
"body": {

 D4.2 GA Number 101016663

30

"timeStamp": 1695805907
"freq": [int]
"power_x": [float],
"power_y": [float],
"channel": [<central freq.: int, width: int>]
"location": string
}
}

Figure 2-15: Example of JSON object injected by a data source to the telemetry system

gRPC

A gRPC interface is used to transport telemetry data, both measurements and events, between

telemetry agents and the telemetry manager. GRPC uses Protocol Buffers as the interface

description language to serialize structured data. Protocol buffers have a strict specification,

which needs to be defined for every type of data being transported. The Protocol buffers schema

implemented in the gRPC interface is presented next.

syntax = "proto3";

package receiver;

// The Receiver service definition.
service Receiver
{
 // Sends Data
 rpc SendData(SendDataRequest) returns (SendDataReply) {}
}

// The request message containing the data
message SendDataRequest
{
 bytes message = 1;
}

// The response message containing the reply
message SendDataReply
{
 bytes response = 1;
}

Figure 2-16: Telemetry gRPC interface Protocol Buffers schema definition

The schema defines a single service that implements the method used to send the data through

the interface. Two types of messages are implemented, one used to convey the data to another

gRPC interface and the other to receive the reply. As both messages are of type bytes, data must

be serialized before being sent, allowing generalization of the telemetry data to be conveyed.

The data is binary serialized using MessagePack, an efficient binary serialization format. Such

encoding format brings interoperability between different programming languages as

implementations are available for most of them.

 D4.2 GA Number 101016663

31

Note that, although such encoding could largely increase the volume of transported data,

intelligent data aggregation performed by telemetry agents and compression performed by the

gRPC interface could reduce such volume to a minimum.

REST API

A REST API has been developed for the remote management of the telemetry system. This

interface exposes methods that can be used by external systems to retrieve information or

perform management actions, including the reconfiguration of the different nodes in the

system. The interface also exposes methods to control the components running inside of each

of the telemetry nodes. The REST API authentication is implemented using a user/password

verification, which issues a token that can be used for a certain period of time.

Figure 2-17: Telemetry Node endpoint structure

Telemetry Node Management

HTTP Request POST /node

Description Perform an action on a telemetry node. This action is defined by the command key inside

the body. The available commands are: stop. The command stop issues a petition to stop

all the running components in the telemetry node and finally shutdown the node.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authenticatio

n

Bearer Token

Body {
 "command": "stop"
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "result": "string"
}

Endpoint GET /node

Description Obtain the information of the node and the information of the running components

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authenticatio

n

Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "name": "string",
 "type": "type",
 "components": "dictionary"
}

 D4.2 GA Number 101016663

32

Telemetry Component Management

Endpoint GET /node/component/{name}/state

Description Get the state of the component identified by the name.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "state": "string"
}

Endpoint GET /node/component/{name}/configuration

Description Get the configuration of the component identified by the name.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "result": "string"
}

HTTP Request POST /node/component

Description Perform an action regarding the components in a telemetry node. This action is defined

by the command key inside the body. The available commands are: deploy, start and

reconfigure. The command deploy issues a petition to deploy a new component

identified by name. The command start issues a petition to run an already deployed

component identified by name. The command reconfigure issues a petition to

reconfigure an already deployed or running component identified by name.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {
 "command": "string",
 "name": "string",
 "config": "dictionary",
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "result": "string"
}

Endpoint DELETE /node/component/{name}

Description Remove the component identified by the name.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

 D4.2 GA Number 101016663

33

Response

JSON

{
 "result": "string"
}

2.8 CONTROL OF PLUGGABLE MODULES
Common Management Interface Specification (CMIS) [CMIS], defines a generic management

communication interface and protocol among the host (e.g., network switch) and modules (e.g.,

optical transceivers). This interface has been defined to provide a standard across a variety of

module capabilities and form factors (QSFP-DD, OSFP, COBO) to foster the vendor agnostic

management. The Coherent CMIS (C-CMIS) extends the CMIS interface to handle coherent

optics pluggables, e.g., 400ZR(+) modules, that require additional calls to perform interface-

related data processing, such as Forward Error Correction (FEC). The CMIS and C-CMIS

specifications are defined within the Optical Internetworking Forum (OIF)[OIF] thanks to the

joint collaboration of vendors of networks devices. These standards fulfil the needs of B5G-OPEN

project for managing ZR and OpenXR pluggable modules within a packet-optical node.

In B5G-OPEN the CMIS/CCMIS implementation in SONiC IPoWDM white box has been deeply

investigated, aiming at supporting dynamic configuration of pluggable modules via REST

interface through the NETCONF agent.

Figure 2-18: (left) CMIS Module State Machine (MSM); (right) Data Path State Machine (DPSM)

The CMIS electrically erasable programmable read-only memory (EEPROM) within the pluggable

module is organized in pages, each of which can be read or written to. Each page contains a

different set of information, such as: module information, Versatile Diagnostics Monitoring

(VDM), configuration, and status. The initialization of the module is represented by the Module

State Machine (MSM), while the configuration is represented by the Data Path State Machine

(DPSM). The MSM defines the initialization process between the device that hosts the pluggable

module and the module itself, as depicted in Figure 2-18(left). Once the pluggable module is

inserted into the IPoWDM box, named 'host' in [CMIS], the MSM enters the 'INSERTED' state.

Consequently, the module is powered, and the 'MgmtInit' transition phase is initiated. During

this phase, the module initializes the Memory Map to default values and sets up the

management communication interface, allowing the host to eventually manage the module.

After that, the module enters the 'ModuleLowPwr' state, during which the host can configure

 D4.2 GA Number 101016663

34

the module using the management interface to read from and write to the management

Memory Map. If the operation is successful, the 'ModulePwrUp' transition phase is triggered,

and the host is informed that the module is in the process of powering up to High Power Mode.

However, if it fails, the 'Resetting' transition phase is triggered, clearing the Memory Map, and

transitioning the MSM to the 'INSERTED' state. When the MSM reaches the 'READY' state, the

module is in High Power mode, and the host can initialize or deinitialize DPSM. If the "READY"

state is not reached, the 'ModulePwrDown' transition phase is triggered, and the module shall

return to the 'ModuleLowPwr' state. The DPSM defines the host-module interactions required

to configure the parameters within the module, including transmission power, frequency,

threshold alarms, and more. As illustrated in Figure 2-18(right), the module in the 'READY' state

is awaiting a configuration request from the host, such as a change in frequency. When a

configuration request is received, the 'DPDeinitS' transition phase is initiated. During this phase,

the module performs all the necessary deinitialization activities on all resources associated with

the current configuration within the module, and the transmission power is turned off. Once the

'DP_Init' state is reached, the 'DPInit Complete' transition phase is triggered, and the module

performs all the necessary initialization activities on its internal resources to apply the new

configuration. If the 'DPInit Complete' process fails, the transition phase will be restarted.

Afterward, the module reaches the 'DP_Initialized' state in this configuration, fully operational,

initialized, and ready to transmit traffic, but it is not powered. Subsequently, the 'DPTxTurnON'

transition phase is triggered, and the module is powered. If this phase is completed, the module

reaches the 'DP_ACTIVATED' state. This indicates that the new configuration has been

successfully applied to the module, and traffic can be transmitted and received. Finally, the

module is moved to the 'READY' state through the 'Prepared' transition phase, which informs

the host that the module is ready to handle a new configuration.

In B5G-OPEN, the control of the above procedure has been successfully integrated in the

NETCONF Agent and successfully validated on an EdgeCore 400Gb/s white box. Specific

frequencies or power levels have been successfully enforced through the Agent in an automated

way. Results show that a change in the configuration is completed in around 14s (9s as Prompt),

the same as using the Common Line Interface (CLI), i.e., imposed by HW constraints of pluggable

modules.

A REST APIs has been developed on top of the CMIS driver to facilitate the integration with the

NETCONF agent. Such interface is used to GET the

 D4.2 GA Number 101016663

35

Figure 2-19: REST APIs developed on top of SONIC.

2.8.1 Transceiver Configuration PUT methods details

2.8.1.1 Frequency

This method is used to set the central frequency in the transceiver that is inserted in a specific

port. As shown, the method allows to specify the port number, frequency slot and grid. The grid

parameter is used because the transceiver supports two grids 100 GHz spacing and 75 GHz

spacing. If the specified central frequency does not exactly match on the specified grid the actual

value to which the laser is tuned is rounded to the nearest value on the grid.

 D4.2 GA Number 101016663

36

Figure 2-20: PUSH method of Transceiver Configuration

2.8.1.2 Power

This method is used to set the output power in the transceiver that is inserted in a specific port.

As shown, the method allows to specify the port number and the output power.

2.8.2 Transceiver Configuration GET method details

This method is used to retrieve information regarding the transceiver inserted in a specific port.

This GET method returns the current values of Frequency, Grid, and Power specified through

the aforementioned PUT methods, moreover it provides the values of BER, and OSNR measured

on the receiver side.

 D4.2 GA Number 101016663

37

Figure 2-21: Response of GET Transceiver Configuration method.

2.9 1.1 PON CONTROL
 1.1.1 PON Controller NBI User Authentication

 User Authentication

HTTP Request POST /users/authenticate/

Description Authenticate and login the user

Request Body

JSON

{
 "type": "object",
 "properties": {
 "email": {
 "type": "string",
 "format": "email"
 },
 "password": {
 "type": "string"
 }
 },
 "required": [
 "email",
 "password"
]
}

 D4.2 GA Number 101016663

38

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

{
 "data": {
 "email": "user@example.com",
 "password": "string"
 }
}

Examples

Response

{
 "auth": "True",
 "fName": "Evangelos",
 "lName": "Kosmatos",
 "email": "vkosmatos@openlightcomm.uk",
 "lastLogin": "2023-10-03T17:35:51.623Z",
 "dateJoined": "2023-05-12T09:05:47.169Z",
 "roles": [
 "Administrators"
],
 "permissions": [
 "other.can_delete_other_branding",
 "accounts.can_read_accounts_admin",
 …………..
],
 "active_database": "Default"
}

2.9.1 1.1.2 PON Controller NBI Retrieve Configuration

Controller Configuration

HTTP Request GET /controllers/configs/

Description Retrieve Controller configuration

Request Body

JSON

No body required

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"

mailto:user@example.com
mailto:vkosmatos@openlightcomm.uk

 D4.2 GA Number 101016663

39

 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

No body required

Examples

Response

{
 "status": "success",
 "data": [
 {
 "_id": "f4:39:09:70:19:06",
 "CNTL": {
 "CFG Version": "R3.1.0",
 "CFG Change Count": 0,
 "CNTL-ALARM-CFG": "Default",
 "Name": "",
 "Picture": "",
 "Location": "",
 "Address": "",
 "Tag": "",
 "Loop Delay": 3,
 "Max Services": 8,
 "OLT Timeout": 300,
 "ONU Threads": 64,
 "Pause": false,
 "Shutdown": false,
 "Statistic Sample": 300,
 "TAPI Trace": [],
 "Max STATS Size": 1000000000,
 "Max SYSLOG Size": 1000000000,
 "Labels": [],
 "Alarm History Duration": 90,
 "UMT Discovery Timeout": 2,
 "Create Date": "2023-05-12 08:57:06.689787"
 },
 "MGMT LAN": {
 "Name": "Unnamed"
 },
 "OLTs": {
 "Secondary Limit": 65535,
 "Unspecified Limit": 65535,
 "Primary": [],
 "Secondary": [],
 "Excluded": []
 },
 "ONU": {
 "Max FW Upgrades": 16,
 "Service Config Policy": "Disabled",
 "Realtime Stats Sample": 1

 D4.2 GA Number 101016663

40

 },
 "NETCONF": {
 "Name": "f4:39:09:70:19:06"
 },
 "Alarm History": {
 "Alarm IDs": [],
 "Ack Count": 0,
 "Ack Operator": "",
 "Purge Count": 0
 },
 "Cascading": {
 "Mode Selection": "Dynamic",
 "Groups": {}
 }
 }
]
}

2.9.2 1.1.3 PON Controller NBI Retrieve OLTs Configuration

OLT Configuration

HTTP Request GET /olts/configs/

Description Retrieve OLTs configuration

Request Body

JSON

No body required

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

No body required

Examples

Response

{
 "status": "success",
 "data": [
 {
 "_id": "70:b3:d5:52:35:48",
 "CNTL": {
 "CFG Version": "R3.1.0"
 },
 "EPON": {
 "Discovery Period": 3000,

 D4.2 GA Number 101016663

41

 "Encryption": "Downstream",
 "Encryption Key Time": 900,
 "FEC": true,
 "Grant Spacing": 16,
 "Laser OFF": 32,
 "Laser ON": 32,
 "Max Frame Size": 9600,
 "Sync Time": 16
 },
 "GPON": {
 "Discovery Period": 3000,
 "Downstream Fec": true,
 "Encryption": "Bidirectional",
 "Encryption Key Time": 600,
 "Error Det Min Sample": 100,
 "Error Det Max Ratio": 20,
 "Guard Time": 64,
 "Max Frame Size": 9600,
 "PON ID": 0,
 "Upstream FEC 0": true,
 "Upstream FEC 1": true,
 "Upstream FEC 2": true,
 "Upstream FEC 3": true,
 "Upstream Preamble 0": 64,
 "Upstream Preamble 1": 64,
 "Upstream Preamble 2": 64,
 "Upstream Preamble 3": 64
 },
 "LLDP": {
 "Transmit": false,
 "Receive": true
 },
 "NNI": {
 "Max Frame Size": 9600
 },
 "NNI Networks": [],
 "OLT": {
 "OLT-ALARM-CFG": "Default",
 "Auto Boot Mode": false,
 "CFG Change Count": 4,
 "Debug Dump Count": 0,
 "Debug Log Level": "NONE",
 "FW Bank Files": [],
 "FW Bank Ptr": 65535,
 "FW Bank Versions": [],
 "Name": "OLT01",
 "Location": "",
 "Address": "",
 "Picture": "",
 "Tag": "",
 "PON Enable": true,
 "PON Mode": "GPON",
 "Reg Allow Count": 0,

 D4.2 GA Number 101016663

42

 "Reg Allow ONU": "ALL",
 "Reset Count": 1,
 "Max Round Trip Time": 250,
 "Labels": [],
 "Shared Downstream Policer": true,
 "Create Date": "2023-05-18 17:32:52.693648"
 },
 "ONU": {
 "Max FW Upgrades": 4,
 "Realtime Stats": false,
 "Enable All Serial Numbers Count": 0
 },
 "ONUs": {
 "AZRS00012230": {
 "ALLOC ID (OMCC)": 1,
 "Disable": false,
 "Enable Count": 0,
 "Disable Count": 0,
 "OLT-Service 0": 1154
 },
 "CMTD424cafdd": {
 "ALLOC ID (OMCC)": 2,
 "Disable": false,
 "Enable Count": 0,
 "Disable Count": 0,
 "OLT-Service 0": 1155
 }
 },
 "Protection": {
 "Peer": "",
 "Switchover Count": 0,
 "Inactive Periods": {
 "Active": 100,
 "Standby": 200
 },
 "Watch": "Disabled",
 "Watch Count": 0
 },
 "NETCONF": {
 "Name": "70:b3:d5:52:35:48"
 },
 "MAC Learning": {
 "Age Limit": 300,
 "Allow CPEs To Move": false
 },
 "Alarm History": {
 "Alarm IDs": [],
 "Ack Count": 0,
 "Ack Operator": "",
 "Purge Count": 0
 },
 "Switch": {
 "ANY": "ANY"

 D4.2 GA Number 101016663

43

 }
 }
]
}

2.9.3 1.1.4 PON Controller NBI Retrieve ONUs Configuration

ONU Configuration

HTTP Request GET /onus/configs/

Description Retrieve OLTs configuration

Request Body

JSON

No body required

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

No body required

Examples

Response

{
 "status": "success",
 "data": [
 {
 "_id": "AZRS00012230",
 "CNTL": {
 "CFG Version": "R3.1.0"
 },
 "OLT": {
 "MAC Address": [
 "ANY"
]
 },
 "OLT-Service 0": {
 "Enable": true,
 "Service Reference": "",
 "Name": "",
 "NNI Network": [
 "s0.c0.c0"
],
 "PON Network": [
 "s0.c0.c0"
],
 "Internal Network": {},

 D4.2 GA Number 101016663

44

 "US CoS Treatment": "copy",
 "US CoS Value": 0,
 "DHCP": {
 "Remote ID": "",
 "Circuit ID": "",
 "Sub Options": "",
 "Enterprise Number": 54469
 },
 "PPPoE": {
 "Remote ID": "",
 "Circuit ID": ""
 },
 "RADIUS": {
 "NAS Identifier": "",
 "NAS Port ID": "",
 "User Name Override": "Default"
 },
 "Filter": {
 "DHCPv4": "pass",
 "DHCPv6": "pass",
 "EAPOL": "pass",
 "PPPoE": "pass"
 },
 "SLA-CFG": "Max",
 "DS-MAP-CFG": "",
 "Learning Limit": 2046,
 "Drop Unknown Source MAC": false
 },
 "OLT-Service 1": {
 "Enable": false,
 "Service Reference": "",
 "Name": "",
 "NNI Network": [],
 "PON Network": [],
 "Internal Network": {},
 "US CoS Treatment": "copy",
 "US CoS Value": 0,
 "DHCP": {
 "Remote ID": "",
 "Circuit ID": "",
 "Sub Options": "",
 "Enterprise Number": 54469
 },
 "PPPoE": {
 "Remote ID": "",
 "Circuit ID": ""
 },
 "RADIUS": {
 "NAS Identifier": "",
 "NAS Port ID": "",
 "User Name Override": "Default"
 },
 "Filter": {

 D4.2 GA Number 101016663

45

 "DHCPv4": "pass",
 "DHCPv6": "pass",
 "EAPOL": "pass",
 "PPPoE": "pass"
 },
 "SLA-CFG": "Max",
 "DS-MAP-CFG": "",
 "Learning Limit": 2046,
 "Drop Unknown Source MAC": false
 }
 }
]
}

2.9.4 1.1.5 PON Controller NBI Retrieve SLAs Configuration

Retrieve SLAs / Bandwidth Profile Configuration

HTTP Request GET /slas/

Description Retrieve all SLAs

Request Body

JSON

No body required

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

No body required

Examples

Response

{
 "status": "success",
 "data": [
 {
 "_id": "Max",
 "CNTL": {
 "CFG Version": "R3.1.0"
 },
 "Up Fixed Rate": 0,
 "Up Guaranteed Rate": 128,
 "Up Guaranteed Max Burst": 409600,
 "Up Best Effort Rate": 10000000,
 "Up Best Effort Max Burst": 409600,
 "Up Priority": 1,

 D4.2 GA Number 101016663

46

 "Up Service Limit": 128,
 "Up Min Grant Period": 0,
 "Up Max Grant Period": 10,
 "Down Guaranteed Rate": 128,
 "Down Guaranteed Max Burst": 256000,
 "Down Best Effort Rate": 10000000,
 "Down Best Effort Max Burst": 256000
 },
 {
 "_id": "Min",
 "CNTL": {
 "CFG Version": "R3.1.0"
 },
 "Up Fixed Rate": 0,
 "Up Guaranteed Rate": 128,
 "Up Guaranteed Max Burst": 409600,
 "Up Best Effort Rate": 0,
 "Up Best Effort Max Burst": 409600,
 "Up Priority": 1,
 "Up Service Limit": 2,
 "Up Min Grant Period": 0,
 "Up Max Grant Period": 40,
 "Down Guaranteed Rate": 128,
 "Down Guaranteed Max Burst": 256000,
 "Down Best Effort Rate": 0,
 "Down Best Effort Max Burst": 256000
 }
]
}

2.9.5 1.1.6 PON Controller NBI SLA Creation

SLAs / Bandwidth Profile Creation

HTTP Request POST /slas/

Description Retrieve SLAs

Request Body

JSON

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "additionalProperties": {},
 "description": "SLA-CFG"
 }
 },
 "required": [
 "data"
]
}

Response

JSON

{
 "status": "success",
 "details": {

 D4.2 GA Number 101016663

47

 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

{
 "data": {
 "_id" : "example_sla",
 "CNTL" : {
 "CFG Version" : "R3.0.0"
 },
 "Up Fixed Rate" : 0,
 "Up Guaranteed Rate" : 128,
 "Up Guaranteed Max Burst" : 409600,
 "Up Best Effort Rate" : 10000000,
 "Up Best Effort Max Burst" : 409600,
 "Up Priority" : 1,
 "Up Service Limit" : 128,
 "Up Min Grant Period" : 0,
 "Up Max Grant Period" : 10,
 "Down Guaranteed Rate" : 128,
 "Down Guaranteed Max Burst" : 256000,
 "Down Best Effort Rate" : 10000000,
 "Down Best Effort Max Burst" : 256000
 }
}

Examples

Response

{
 "status": "success",
 "data": […]
}

2.9.6 1.1.7 PON Controller NBI SLA Update

SLAs / Bandwidth Profile Update

HTTP Request PUT /slas/{sla_id}

Description Update specific SLA

Request Body

JSON

{
 "type": "object",
 "properties": {
 "data": {
 "type": "object",
 "additionalProperties": {},
 "description": "SLA-CFG"
 }
 },
 "required": [

 D4.2 GA Number 101016663

48

 "data"
]
}

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

{
 "data": {
 "_id" : "example_sla ",
 "CNTL" : {
 "CFG Version" : "R3.0.0"
 },
 "Up Fixed Rate" : 0,
 "Up Guaranteed Rate" : 128,
 "Up Guaranteed Max Burst" : 409600,
 "Up Best Effort Rate" : 10000000,
 "Up Best Effort Max Burst" : 409600,
 "Up Priority" : 1,
 "Up Service Limit" : 128,
 "Up Min Grant Period" : 0,
 "Up Max Grant Period" : 10,
 "Down Guaranteed Rate" : 128,
 "Down Guaranteed Max Burst" : 256000,
 "Down Best Effort Rate" : 10000000,
 "Down Best Effort Max Burst" : 256000
 }
}

Examples

Response

{
 "status": "success",
 "data": […]
}

2.9.7 1.1.8 PON Controller NBI SLA Delete

SLAs / Bandwidth Profile Update

HTTP Request DEL /slas/{sla_id}

Description Delete specific SLA

Request Body

JSON

{
 "type": "object",
 "properties": {

 D4.2 GA Number 101016663

49

 "data": {
 "type": "object",
 "additionalProperties": {},
 "description": "SLA-CFG"
 }
 },
 "required": [
 "data"
]
}

Response

JSON

{
 "status": "success",
 "details": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 },
 "data": {
 "additionalProp1": "string",
 "additionalProp2": "string",
 "additionalProp3": "string"
 }
}

Example

Request

{
 "data": {
 "_id" : "example_sla ",
 }
}

Examples

Response

{
 "status": "success",
 "data": […]
}

2.10 LIFI INTEGRATION

2.10.1 NBI for the LiFi controller

The NBI for the LiFi Controller serves as a channel for communication with the broader B5G-

OPEN infrastructure. Notably, this NBI is implemented based on REST API principles, ensuring an

easily accessible and standardised interface. By leveraging these endpoints described below,

users can proficiently manage the LiFi Access Points (APs) connected to the system.

1) Device Management Endpoints:

• Get device name:

‘GET /devices/{device-id}/lifi/interface/name’

Retrieve the unique name designated to the specified LiFi device.

• Set device name:

‘PUT /devices/{device-id}/lifi/interface/name’

Update or assign a distinct name to the specified LiFi device.

 D4.2 GA Number 101016663

50

• Get device status:

‘GET /devices/{device-id}/lifi/interface/status’

Determine the current operational status (either 'up' or 'down') of the specified LiFi device.

2) IP Configuration Endpoints:

• Get IP address:

‘GET /devices/{device-id}/lifi/interface/ip-addr’

Fetch the current IP address configuration of the specified LiFi device.

• Set IP address:

‘PUT /devices/{device-id}/lifi/interface/ip-addr’

Update or assign a new IP address for the specified LiFi device.

• Get netmask:

‘GET /devices/{device-id}/lifi/interface/netmask’

Retrieve the subnet mask associated with the specified LiFi device.

• Set netmask:

‘PUT /devices/{device-id}/lifi/interface/netmask’

Update or assign a new subnet mask for the specified LiFi device.

• Get gateway:

‘GET /devices/{device-id}/lifi/interface/gateway’

Fetch the gateway address currently set for the specified LiFi device.

• Set gateway:

‘PUT /devices/{device-id}/lifi/interface/gateway’

Update or designate a new gateway address for the specified LiFi device.

3) Wireless Configuration Endpoints:

• Get wireless status:

‘GET /devices/{device-id}/lifi/interface/access-point/enabled’

Identify whether the wireless capability on the specified LiFi device is active (enabled) or

not.

• Enable or disable wireless:

‘PUT /devices/{device-id}/lifi/interface/access-point/enabled’

Toggle the wireless functionality of the specified LiFi device between enabled and disabled

states.

• Get operating mode:

‘GET /devices/{device-id}/lifi/interface/access-point/mode’

Retrieve the current operational mode (e.g., 'ap' for Access Point) set for the specified LiFi

device.

• Set operating mode:

‘PUT /devices/{device-id}/lifi/interface/access-point/mode’

 D4.2 GA Number 101016663

51

Define the desired operational mode for the specified LiFi device.

• Get SSID:

‘GET /devices/{device-id}/lifi/interface/access-point/ssid’

Access the SSID being broadcast by the specified LiFi device.

• Set SSID:

‘PUT /devices/{device-id}/lifi/interface/access-point/ssid’

Define or update the SSID for the specified LiFi device to broadcast.

• Set password:

‘PUT /devices/{device-id}/lifi/interface/access-point/security/password’

Assign a new or update the existing password for the specified LiFi network.

• Set encryption type:

‘PUT /devices/{device-id}/lifi/interface/access-point/security/encryption’

Designate the desired encryption method for the specified LiFi network's security.

4) Network Configuration Endpoints:

• Get VLAN ID:

‘GET /devices/{device-id}/lifi/interface/access-point/vlan-id’

Fetch the VLAN ID associated with the specified LiFi network.

• Set VLAN ID:

‘PUT /devices/{device-id}/lifi/interface/access-point/vlan-id’

Assign or update the VLAN ID for the specified LiFi network.

 D4.2 GA Number 101016663

52

Below is a representation of the default setting of a LiFi device in JSON:

2.10.2 NBI for the LiFi AP

The primary protocol underling the LiFi AP NBI implementation for configuration pureposes is

NETCONF. It is an XML-based protocol that provides mechanisms to install, manipulate, and

{

 "lifi": {

 "interface": {

 "name": "wlan0",

 "status": "up",

 "ip-addr": "192.168.1.100",

 "netmask": "255.255.255.0",

 "gateway": "192.168.1.1",

"access-point": {

 "enabled": true,

 "mode": "ap",

 "ssid": "LiFi",

 "security": {

 "password": "string",

 "encryption": "NONE"

 },

 "vlan-id": 1

 }

 }

 }

}

module: plf-lifi

 +--rw lifi

 +--rw interface

 +--rw name? string

 +--rw status? enumeration {down, up}

 +--rw ip-addr? ip-address

 +--rw netmask? ip-address

 +--rw gateway? ip-address

 +--rw access-point

 +--rw enabled? boolean

 +--rw mode? enumeration {ap}

 +--rw ssid? string

 +--rw security

 | +--rw password? string

 | +--rw encryption? enumeration {WPA2, NONE}

 +--rw vlan-id? uint32

 D4.2 GA Number 101016663

53

delete the configuration of network devices. Below is the YANG model for the LiFi AP, indicating

the primary configuration items:

As seen from the structure, the YANG model describes the primary components and

configurations of the LiFi AP. This includes basic configurations such as the device's name, IP

address, netmask, and gateway, along with wireless-specific settings under the access-point

container, such as SSID, security configurations, and VLAN ID. For example, the retrieve the

current IP configuration data for the LiFi AP:

It's noteworthy to mention that, for users aiming to integrate the LiFi AP with broader network

systems, the combination of NETCONF and YANG provides a standardized, predictable interface.

This facilitates seamless integrations, efficient management, and ensures compatibility with a

wide range of network management tools.

While this NETCONF-based NBI is primarily used for configuration and management tasks, the

LiFi AP also features another NBI for telemetry purposes. Instead of configuration, this interface

focuses on the real-time export of telemetry data, providing performance metrics and

operational insights from the LiFi AP. A detailed description on this telemetry interface will be

presented in subsequent sections of this documentation.

2.11 B5G-OPEN NORTH BOUND INTERFACE
The B5G-OPEN project will provide ad-hoc developed APIs using REST/APIs paradigm, following

best practices (e.g., Open-API documentation), as the northernmost API of the ecosystem, this

way being exposed by B5G-ONP component. The target user of this API in an industrial

deployment would be e.g., the operators’ OSS systems, or directly operator personnel in charge

on provisioning of the different services, IT, IP, DSR or everything together encapsulated under

the network slice principles.

This API is designed to provide open and programmatic access to the different use cases to be

demonstrated. The details of these APIs will be defined later in the project, appropriately

reported.

General policies have been already defined for those APIs:

• REST-based API, exposed via open documentation frameworks, preferably OpenAPI.

o Making use of the IETF YANG model for network slices [NSv16].

• Secured service provisioning operations enabled by user authentication.

• Adoption of the Optimization-as-a-Service (OaaS) paradigm [Gar19][Pav15]:

<get>

 <filter type="subtree">

 <interface xmlns="http://.purelifi.com/yang">

 <ip-addr/>

 <netmask/>

 <gateway/>

 </interface>

 </filter>

 </get>

 D4.2 GA Number 101016663

54

o This relies on the concept of algorithm repository, as a set of algorithms

exposed, browsable in a catalogue, and runnable via the open APIs. A subset of

the algorithms developed along B5G-OPEN will be integrated using this form.

o Utilization of container models for shipping algorithm implementations. This is

an enabler for integrating algorithms developed in different languages and

platforms (a practical aspect, that becomes a booster for the OaaS concept),

and possibly by third parties, into the B5G-ONP system.

Figure 2-22: B5G-ONP NBI endpoint structure

2.11.1 B5G-ONP NBI User Authentication

User Authentication

HTTP Request POST /user/login

Description This endpoint is used by upper layer user to access to the API. This is performed by

sending user/password credentials and the B5G-ONP’s AUTH sub-module oversees

processing them and returning a concrete token for that user and session. The bearer

token is necessary to remotely execute the rest of HTTP requests offered by this NBI API.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication User/password

Body {
 "grantType": "token",
 "user": "string",
 "password": "string",
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "token": "string"
}
}

2.11.2 B5G-ONP NBI SDN Network Controller Management

SDN Network Controller Management

 D4.2 GA Number 101016663

55

HTTP Request POST /network-controller

Description Registers a new network controller to be orchestrated by the B5G-ONP system and a

unique controller-id is returned if proceed. The types of network controllers compatibles

are the ones expected to interact with the B5G-ONP: IP, Optical, XR an PON.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {
 "uid": "string",
 "type": "string",
 "ip-address": "string",
 "port": 0,
 "user": "string",
 "password": "string"
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "id": "string"
}

Endpoint GET /network-controller

Description Obtain the list of registered controllers in the B5G-ONP.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

[
 {
 "uid": "string",
 "type": "type",
 "ip-address": "string",
 "port": 0,
 "user": "string",
 "password": "string"
 }
]

Endpoint GET /network-controller/{id}

Description Obtain the information of the SDN network controller associated to a concrete id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "uid": "string",
 "type": "type",
 "ip-address": "string",
 "port": 0,
 "user": "string",
 "password": "string"
}

Endpoint DELETE /network-controller/{id}

Description Unregister the SDN network controller associated to a concrete id.

 D4.2 GA Number 101016663

56

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

2.11.3 B5G-ONP NBI Container Orchestrator Management

Container Orchestrator Management

HTTP Request POST /container-orchestrator

Description Registers a new container orchestrator. During the lifetime of the project is expected to

handle just Kubernetes type. Additionally, it is possible to execute specific configuration

profiles in the “kube-config” field in a similar way than in the Kubernetes control plane

API. An id is assigned id registered.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {
 "uid": "string",
 "type": "Kubernetes",
 "ip-address": "string",
 "kube-config": "string"
}

Response code 200 OK / 404 Not Found / 422 Error

Response

JSON

{
 "id": "string"
}

Endpoint GET /container-orchestrator

Description Obtain the list of registered container orchestrators in the B5G-ONP system.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

[
 {
 "uid": "string",
 "type": "Kubernetes",
 "ip-address": "string",
 "kube-config": "string"
 }
]

Endpoint GET /container-orchestrator/{id}

Description Obtain the information of a given container orchestrator associated to a concrete id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

 D4.2 GA Number 101016663

57

Response

JSON

{
 "uid": "string",
 "type": "Kubernetes",
 "ip-address": "string",
 "kube-config": "string"
}

Endpoint DELETE /container-orchestrator/{id}

Description Unregister the container orchestrator associated to a concrete id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

2.11.4 B5G-ONP NBI Network application provisioning

Network Application Provisioning

HTTP Request POST /single-worker-node-app

Description Sends a POST request to instantiate a network service/application in a single worker node

of a Kubernetes cluster previously registered in the B5G-OPEN ecosystem. To facilitate

its usage, the data model of the body of the request is based on the K8s model and

naming. For instance, it uses K8s concepts as pod, service or image. To clarify, this

functionality is restricted to deploy only a network application in one single worker node,

considering one or multiple pods related by the same service. Here, only IT resources are

considered in the provisioning.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {
 "container-orchestrator-uid": "string",
 "worker-node": "string",
 "metadata": {
 "name": "string",
 "namespace": "string",
 "labels": "string",
 "annotations": "string"
 },
 "containers": [
 {
 "name": "string",
 "image": "string",
 "ports": "string",
 "resources": {
 "cpu-requests": 0,
 "cpu-limits": 0,
 "memory-requests": 0,
 "memory-limits": 0
 },
 "env": "string",
 "command": "string"
 }
],
 "volumes": [

 D4.2 GA Number 101016663

58

 "string"
],
 "restartPolicy": "string",
 "services": {
 "name": "string",
 "type": "LoadBalancer",
 "pod-label": "string",
 "ports": [
 {
 "name": "string",
 "internal-port": 0,
 "external-port": 0
 }
]
 }
}

Response code 200 OK / 404 Not Found / 422 Error

Response

JSON

{
 "id": "string"
}

Endpoint GET /single-worker-node-app/{id}

Description Obtain the information of the instantiation of a network application registered in the

system with an id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "container-orchestrator-uid": "string",
 "worker-node": "string",
 "metadata": {
 "name": "string",
 "namespace": "string",
 "labels": "string",
 "annotations": "string"
 },
 "containers": [
 {
 "name": "string",
 "image": "string",
 "ports": "string",
 "resources": {
 "cpu-requests": 0,
 "cpu-limits": 0,
 "memory-requests": 0,
 "memory-limits": 0
 },
 "env": "string",
 "command": "string"
 }
],
 "volumes": [
 "string"
],
 "restartPolicy": "string",
 "services": {
 "name": "string",
 "type": "LoadBalancer",
 "pod-label": "string",
 "ports": [

 D4.2 GA Number 101016663

59

 {
 "name": "string",
 "internal-port": 0,
 "external-port": 0
 }
]
 }
}

Endpoint DELETE /single-worker-node-app/{id}

Description Send a request to remove the deployment of a single-worker-node kubernetes service

assigned with a given id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

2.11.5 B5G-ONP NBI Network slice provisioning

Network Slice Provisioning

HTTP Request POST /network-slicing

Description Sends a POST request to instantiate a network slice, defining a potentially multi-worker

node network application reserving both IT and network resources among the VNF/CNFs

of the network slice. The model of the request is assumed as a mix of two models, one

for the IT management defined as the previously presented single-worker-node-app

(note that can define more than one) and the YANG model of the IETF Network Slice

Service. To clarify, the field “ietf-network-slice-definition:additionalProp1” is expected to

receive a JSON that complies with the IETF NSS model, as depicted as follows:

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

 D4.2 GA Number 101016663

60

Authentication Bearer Token

Body {
 "single-worker-node-apps": [
 {
 "container-orchestrator-uid": "string",
 "worker-node": "string",
 "metadata": {
 "name": "string",
 "namespace": "string",
 "labels": "string",
 "annotations": "string"
 },
 "containers": [
 {
 "name": "string",
 "image": "string",
 "ports": "string",
 "resources": {
 "cpu-requests": 0,
 "cpu-limits": 0,
 "memory-requests": 0,
 "memory-limits": 0
 },
 "env": "string",
 "command": "string"
 }
],
 "volumes": [
 "string"
],
 "restartPolicy": "string",
 "services": {
 "name": "string",
 "type": "LoadBalancer",
 "pod-label": "string",
 "ports": [
 {
 "name": "string",
 "internal-port": 0,
 "external-port": 0
 }
]
 }
 }
],
 "ietf-network-slice-definition": {
 "additionalProp1": {}
 }
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "id": "string"
}

Endpoint GET /network-slice/{id}

Description Obtain the information related to the network-service identified with id

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

 D4.2 GA Number 101016663

61

Response

JSON

{
 "single-worker-node-apps": [
 {
 "container-orchestrator-uid": "string",
 "worker-node": "string",
 "metadata": {
 "name": "string",
 "namespace": "string",
 "labels": "string",
 "annotations": "string"
 },
 "containers": [
 {
 "name": "string",
 "image": "string",
 "ports": "string",
 "resources": {
 "cpu-requests": 0,
 "cpu-limits": 0,
 "memory-requests": 0,
 "memory-limits": 0
 },
 "env": "string",
 "command": "string"
 }
],
 "volumes": [
 "string"
],
 "restartPolicy": "string",
 "services": {
 "name": "string",
 "type": "LoadBalancer",
 "pod-label": "string",
 "ports": [
 {
 "name": "string",
 "internal-port": 0,
 "external-port": 0
 }
]
 }
 }
],
 "ietf-network-slice-definition": {
 "additionalProp1": {}
 }
}

Endpoint DELETE /network-service/{id}

Description Remove the connection and service deployment of a network-slice registered with id

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

 D4.2 GA Number 101016663

62

2.11.6 B5G-ONP NBI DSR connection provisioning

DSR Connection Provisioning

HTTP Request POST /dsr-connection

Description Request to create a DSR connection in the underlying OTN network indicating, the source

and destination nodes, direction and capacity to reserve in the network.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {
 "source-sip-id": "string",
 "destination-sip-id": "string",
 "direction": "BIDIRECTIONAL",
 "requested-capacity-gbps": 0
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "id": "string"
}

Endpoint GET /dsr-connection/{id}

Description Obtain the information of a DSR connection established in the B5G-ONP system with id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "source-sip-id": "string",
 "destination-sip-id": "string",
 "direction": "BIDIRECTIONAL",
 "requested-capacity-gbps": 0
}

Endpoint DELETE /dsr-connection/{id}

Description Delete the DSR connection established in the underlying OTN network associated to a

concrete id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

2.11.7 B5G-ONP NBI IP flow provisioning

IP Flow Provisioning

HTTP Request POST /ip-flow

 D4.2 GA Number 101016663

63

Description Similar to DSR connections, this request creates an IP connection in the IP/MPLS domain.

It is worth mentioning that flow constraints can be added to the the definition of an IP

flow to assume, for instance, maximum latency or other IP-related metrics.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {
 "source-node-id": "string",
 "destination-node-id": "string",
 "connection-type": "connection-oriented",
 "direction": "BIDIRECTIONAL",
 "requested-capacity-gbps": 0,
 "flow-constraints": {
 "maximum-latency-ms": 0,
 "additionalProp1": {}
 }
}

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "id": "string"
}

Endpoint GET /ip-flow/{id}

Description Obtain the information an IP flow established with an id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

{
 "source-node-id": "string",
 "destination-node-id": "string",
 "connection-type": "connection-oriented",
 "direction": "BIDIRECTIONAL",
 "requested-capacity-gbps": 0,
 "flow-constraints": {
 "maximum-latency-ms": 0,
 "additionalProp1": {}
 }
}

Endpoint DELETE /ip-flow/{id}

Description Remove IP connection registered with a concrete id.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found / 422 Invalid Request

Response

JSON

Note that the definition of this NBI may undergo some variation, adding or removing

functionalities or model changes as needs arise during the life of the project.

 D4.2 GA Number 101016663

64

2.12 KUBERNETES
The innovative solution proposed by B5G-OPEN represents a new method to manage resources

and services in the Kubernetes environment, leveraging the power and flexibility of the

Kubernetes API Server (kube-apiserver). This resource, located at the core of the Kubernetes

cluster, is available in Kubernetes master and allows control and monitoring to efficiently

manage resources under this environment.

The Kubernetes architecture adopted in this project is divided into two fundamental elements

that work together to achieve effective orchestration and management as shown in Figure 2-23:

Kubernetes cluster architecture (source: [K8s])

Figure 2-23: Kubernetes cluster architecture (source: [K8s])

• Control Plane: It represents the brain of Kubernetes, being the epicentre of all decisions

such as scheduling pods, maintaining desired state, or adapting to changes in the

environment. Among its main components are kube-apiserver, Controller Manager,

Scheduler and etcd. Each of them has its role in the coherent and fluid operation of the

cluster.

• Worker Nodes: These are machines within the cluster where containerized applications

are executed. These nodes receive instructions and directives from the control plane,

allowing the execution of tasks and reporting the status of the same.

By deepening the role of kube-apiserver, a series of endpoints emerge that become the primary

reference points for the comprehensive management of resources within the previously

outlined architecture. To interact with these endpoints, it is necessary to meet the

authentication and authorization requirements established by Kubernetes. These security

measures are designed to safeguard access to cluster resources through its API, thus ensuring

the integrity and confidentiality of data and operations.

The integration of the B5G-OPEN Platform with Kubernetes and its focus on kube-apiserver

underline the importance of a secure and efficient link between the platform and the underlying

infrastructure. Next, we will explore in more depth the different endpoints and how this synergy

with Kubernetes empowers advanced resource and service management in the context of the

B5G-OPEN architecture. Figure 2-24 summarizes the main endpoints. To achieve this, the

content follows the identical structure provided in section 8.4 of D1.2 within the B5G-OPEN

project.

 D4.2 GA Number 101016663

65

Figure 2-24: Structure for the kube-apiserver endpoints

Given the inherent complexity of the Kubernetes model and the plethora of functional

possibilities offered by its kube-apiserver, in this project we only focus on the HTTP requests

related to the jobs to be performed by the B5G-ONP in IT orchestration and network app

provisioning. Thus, the metrics to obtain and operations to command under the umbrella of the

B5G-OPEN project are related to pods, services, namespace and deployments only. This set of

requests and intelligence will be developed in as Kubernetes client in the B5G-ONP’s SBI module.

To complement the understanding, in the following table two exemplary requests are shown to

highlight the usage of the Kubernetes API, in this case, first, to retrieve overall information of

the pods instantiated in a given Kubernetes namespace, and second, to obtain information

about a particular pod instance individually:

Pods

Endpoint GET /api/v1/namespaces/{namespace}/pods

Description The endpoint is used to retrieve information about pods in a specific namespace in a

Kubernetes cluster. Pods are the basic unit of deployment in Kubernetes, and they can

contain one or more containers. The default namespace is default.

When you make a call to this endpoint, the response is a JSON object that contains

details about the pods in the specified namespace. The response may include

information such as the names of the pods, their states, the container images, the IP

addresses, the associated labels, and other relevant attributes. It is important to note

that if there are many pods in the namespace, the response may be paginated, which

means that pagination links will be provided to access additional results if necessary.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

 D4.2 GA Number 101016663

66

Response code 200 OK

Endpoint GET /api/v1/namespaces/{namespace}/pods/{pod}

Description This API endpoint allows users to retrieve detailed information about a specific Pod

within the designated namespace of a Kubernetes cluster. A Pod is the smallest

deployable unit in Kubernetes, representing a single instance of a running process

within the cluster. The response will be in JSON format, providing comprehensive

details about the requested Pod. This information includes metadata, status, container

details, labels, and other relevant attributes that describe the state and configuration

of the Pod.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body -

Response code 200 OK / 404 Not Found

2.13 TELEMETRY DATA SOURCES

2.13.1 TAPI Optical Network Orchestrator / SDN controller

In this case, the objective is to use streaming (mechanism that handles the providing of data

from one system to another in some form of steady and continuous data flow) for the reporting

(notification) of ongoing change of state of the controlled system from one Management-

Control entity (TAPI Optical Network Orchestrator) to another (usually superior) management-

control entity. Since a significant part of the information is derived from instrumentation the

data flow is often called telemetry. A streaming approach is defined that focuses on conveying

TAPI entities, i.e., yang sub-trees and allow a client to achieve and maintain eventual consistency

with the state of the controlled system.

In this setting, an Event source/server streaming mechanism is made available as an alternative

to traditional notifications. The streaming capability is distinct from TAPI Notification and is

designed to better deal with scale and to provide an improved operational approach. In this

context, any component of the SDN control plane may act as a source of streaming telemetry.

In particular, the TAPI Optical Network Orchestrator SDN controller will act as a data source. For

this, the internal architecture of the software will be modified to report asynchronous events

that happen in the network Macroscopically, the component will implement a REDIS client

following the B5G-OPEN network streaming telemetry architecture and will generate

asynchronous events related to topology and connection management. The events that will be

notified cover network events, related to:

- Topology (new link, new node, updated node edge point…)

- Connectivity (new service, new connection)

The encoding of such events follows TAPI streaming and Telemetry yang model. For example,

the next snippet shows a specific event:

{

 "metadata":{

 "measurement":"EventTelemetry",

 "index":"sdn_index"

 },

 D4.2 GA Number 101016663

67

 "data":{

 "tapi-streaming:log-record":{

 "log-record-body":{

 "event-time-stamp":{

 "primary-time-stamp":"2022-11-02 11:05:25.080535465 UTC"

 },

 "link":{

 "cost-characteristic":[

 {

 "cost-name":"te-metric",

 "cost-value":"1.000000"

 }

],

 "direction":"UNIDIRECTIONAL",

 "layer-protocol-name":[

 "PHOTONIC_MEDIA"

],

 "node-edge-point":[

 {

 "node-edge-point-uuid":"89937add-3380-58ab-94ff-9b2fb4efbeeb",

 "node-uuid":"589df6c1-90e1-51f5-bda4-b4cd6b2d01e4",

 "topology-uuid":"d8013ae5-12d1-54c0-b653-5d3b5080989f"

 }

],

 "uuid":"71505848-d2b3-57dd-8069-295ce111ec61"

 },

 "record-content":"LINK"

 },

 "log-record-header":{

 "entity-key":"71505848-d2b3-57dd-8069-295ce111ec61",

 "log-append-time-stamp":"2022-11-02 11:05:25.080519123 UTC",

 "record-type":"RECORD_TYPE_CREATE_UPDATE",

 "tapi-context":"1d2ba340-41c3-53a9-a615-88380211e6fc",

 "token":"0"

 }

 }

 }

}

2.13.2 LiFi Access Points

The LiFi AP also serves as a significant source of telemetry data. This data plays a crucial role in

monitoring, maintaining, and optimizing the performance of the LiFi network.

Prometheus, an industry-standard monitoring system, fetches metrics from its monitored

entities by scraping metrics exposed on HTTP endpoints. While numerous systems adopt a push

model, sending metrics directly to their monitoring platforms, Prometheus distinguishes itself

by employing a pull or scrape approach.

The LiFi AP is harnessed as a Prometheus exporter utilizing the Lua scripting language, renowned

for its lightweight footprint. This exporter undertakes the role of aggregating the LiFi telemetry

data and formulating it into a structure palatable for Prometheus. After the data extraction by

the Lua script, these metrics are displayed on the ‘/metrics’ HTTP endpoint, setting the stage for

Prometheus server's periodic scrapes.

Here is the telemetry workflow:

 D4.2 GA Number 101016663

68

1) Data Collection at the AP:

Using utilities like ‘ubus’ and ‘iwinfo’, the LiFi AP extracts crucial telemetry data. Information like

signal strength, link speed, inactivity durations, and data transmission rates are some of the

metrics harvested.

• ‘ubus’ offers a comprehensive messaging interface, facilitating queries and interaction with

various system components of the AP, including the wireless network status.

• ‘iwinfo’ acts as a bridge over diverse Linux commands, ensuring consistent information

retrieval across different wireless device drivers.

2) Exporting Data to Prometheus Server:

As a Prometheus client, the LiFi AP collects its telemetry data, making it accessible for

Prometheus to scrape.

3) Data Storage in JSON Format

The telemetry data sent by the AP is well structured and converted in the JSON format.

4) Telemetry Adaptor:

The ‘TelemetryAdaptor’ class receives data in JSON format and sends it into a Redis Stream

inside the GODAI architecture.

By following these processes, the LiFi AP ensures that the B5G-OPEN infrastructure remains

informed on the LiFi status and ready for further management.

The current telemetry data metrics include signal strength (‘station.signal’), inactivity time

(‘station.inactive’), transmission rate (‘station.tx_rate’), reception rate (‘station.rx_rate’),

number of transmitted packets (‘station.tx_packets’), and number of received packets

(‘station.rx_packets’). Here’s an example of the telemetry data:

lifi_station_signal_dbm{mac="70:B3:D5:95:91:7A",interface="LiFi-Sec"} -43

lifi_station_transmit_kilobits_per_second{mac="70:B3:D5:95:91:7A",interface="LiFi-Sec"}

35000

lifi_station_receive_kilobits_per_second{mac="70:B3:D5:95:91:7A",interface="LiFi-Sec"} 10000

lifi_station_transmit_packets_total{mac="70:B3:D5:95:91:7A",interface="LiFi-Sec"} 297

lifi_station_receive_packets_total{mac="70:B3:D5:95:91:7A",interface="LiFi-Sec"} 30

The telemetry data being represented in a structed JSON format is as follows:

{

 "interface": "LiFi-Sec",

 "mac": "70:B3:D5:95:91:7A",

 "lifitelemetry": {

 "signal_dbm": -43,

 "transmit_speed_kbps": 35000,

 "receive_speed_kbps": 10000,

 "transmit_packets_total": 297,

 "receive_packets_total": 30

 }

}

 D4.2 GA Number 101016663

69

2.13.3 Data Collection

“Flex-Telemetry” (see Figure 413) is a program that performs periodically requests to collect
performance measurements from ADVA/ADTRAN devices, using NETCONF and a combination
of open (OpenConfig) and proprietary data models. Meanwhile, a modular plugin system
provides a NBI interface capable of providing a stable source of stream telemetry to different
mediums, such as time-series and in-memory DBs, International Data Spaces (IDS)

Figure 2-25: ADVA Flex-Telemetry agent.

The FlexTelemetry agent was extended with a northbound plugin to the Redis database and a

southbound driver for monitoring of OLS elements such as amplifiers and ROADMs. The driver

is based on Netconf using OpenConfig models and SNMP polling for parameters such as Laser

bias current for amplifiers which do not support NETCONF).

The FlexTelemetry agent was successfully tested in the OFC 2023 demo [OFC2023]. The KPIs to

measure the saleability and performance of the FlexTelemetry agent will be minimum time

interval between reads and number of supported parameters/devices with different SBI drivers

and NBI plugins.

2.13.4 Spectrum monitoring

To measure optical spectrum, we leverage the telemetry system developed by B5G-OPEN by

implementing a telemetry adaptor. We can monitor the spectrum at the ingress and at the

egress port of an optical node.

For monitoring purposes, we use the Nokia Optical Network testbed which combines more than

400 km optical fibre with 7 Nodes (Figure 2-26). The hardware elements come from 3 different

vendors (Nokia, Lumentum, and Bell Labs prototype). The mesh network testbed also integrates

 D4.2 GA Number 101016663

70

offline lab measurement. We have fully characterized i) the fibres through fibre length, loss and

chromatic dispersion and ii) optical nodes: ROADM losses. We can insert traffic thanks to real-

time transponders (12 commercial elastic TRX Line) and offline transponder. Other channels

based on ASE noise are available to load the testbed. The testbed is continuously monitored by

our agent.

Figure 2-26 Nokia Optical Network testbed

The telemetry message for spectrum monitoring is sent to REDIS instance via JSON with the

following structure:

{
 freq : [<array of frequency value in MHz>]
 power_x : [<array of power value in mB>],
 power_y : [<array of power value in mB>],
 channel: [<array of [<central channel frequency MHz>,< channel width in
MHz >]>]
 location:<string containing location identifier>
}

This spectrum monitoring has been used in a B5G-OPEN demonstration showcased in [Gon23].

 D4.2 GA Number 101016663

71

3 B5G-OPEN OPTICAL NETWORK PLANNER (B5G-ONP)

The B5G-OPEN Optical Network Planner (B5G-ONP) component is an integral part of the control

plane and is orchestrating both IT and network resources. Within the B5G-OPEN project, the

B5G-ONP serves as the hub that provides design, optimization, and planning tools for deploying,

managing and configuring services and resources, easing the integration with external

components. It includes three main key modules:

• Provisioning and Discovery for resource allocation and identification, ensuring seamless

integration.

• Dimensioning and analysis module making use of the integrated algorithms and

resources.

• Optical Path Computation Element for enhancing the efficiency of the network.

The connectivity between B5G-ONP and the application/service layer (operators) is through

the Northbound Interface (NBI) and the ONP interacts with the rest of the control plane

elements (PON SDN Controller, IP SDN Controller, TAPI Optical Network Orchestrator, and

Kubernetes) by using the Southbound Interface (SBI). Figure 3-1 shows the architecture and

interconnections of the B5G-ONP component.

Figure 3-1 Architecture and interconnection of B5G-ONP component

 D4.2 GA Number 101016663

72

3.1 COMPONENT ARCHITECTURE
The B5G-ONP component is a control plane module which allows the coordination and

orchestration of IT and network resources. This module is endowed with an array of capabilities

encompassing the provisioning of tools for designing, optimizing, and strategizing the

deployment, administration, and configuration of services and resources within the network

infrastructure.

In addition to these core functionalities, the B5G-ONP component will prototype a user-friendly

Graphical User Interface (GUI) aiming to improve the Quality of user Experience (QoE). This GUI

aims to streamline interactions with the underlying network components, ultimately

contributing to an elevated level of usability and efficiency.

Regarding process automation and the concept of Zero-Touch management, the B5G-ONP

component exposes a Northbound Interface (NBI) REST API. This interface designed for network

operators as well as higher-level components or services. Conversely, the B5G-ONP component

makes use of the Southbound Interface (SBI) to establish seamless integration with external

components such as PON SDN Controller, IP SDN Controller, TAPI Optical Network Orchestrator,

and Kubernetes.

The B5G-ONP component functions as a self-contained entity, that integrates diverse modules

to introduce necessary functionalities and to enhance network performance by a clear

understanding of the global requirements. These modules are:

• The Provisioning and Discovery module bears the responsibility of orchestrating the

allocation of network resources, both physical and virtual, by automating deployment

and configuration processes in accordance with user requests, policies, and predefined

templates. This unit conducts thorough scans and imports of network segment

topologies. Subsequently, it identifies the services and dependencies, consolidating this

information into a centralized repository. In effect, this module emerges as a

comprehensive platform, effectively managing the network environment on behalf of

network administrators.

• The Dimensioning and Analysis module assumes the critical role of forecasting and

optimising the performance of the network infrastructure. This entails making informed

choices concerning capacity planning and network dimensioning. Employing a fusion of

data analytics and machine learning methodologies, the B5G-ONP examines network

traffic patterns and resource utilization. The goal is to prognosticate the performance

requisites of the network – encompassing elements such as capacity, latency, jitter, and

more. These predictions are meticulously aligned with the network's topology and

application requisites.

• The Optical Path Computation Element evaluates technical variables to estimate the

optimal route for optical connections, leveraging available resources within the B5G-

ONP framework to mitigate congestion and enhance overall efficiency. The module

builds upon preceding discovery efforts, estimating the performance of various

admissible paths. Subsequently, the B5G-ONP undertakes an assessment of the

performance of these newly identified route options, configuring the underlying

resources (e.g., Optical SDN Controller) to attain the optimal setup that guarantees

Quality of Transmission (QoT).

The previous modules are incorporated within the B5G-ONP ecosystem as part of the network

orchestration, making easier the integration and coordination of B5G-OPEN modules and

 D4.2 GA Number 101016663

73

component by a unified unit. The subsequent section details the integrated interfaces within the

B5G-ONP component for the exchange of the information with external modules, collaboratively

developed by project partners. The B5G-ONP is implemented as part of the e-Lighthouse

Network Planner [ENP].

3.2 INTERFACES
As described above and shown in Section 2.11, the NBI is the northernmost interface between

the B5G-ONP and the applications and services that leverage network resources through a REST

API framework. The Graphical User Interface (GUI) employs the information surfaced by this

interface to define an aesthetically organized representation of the network's structure.

Network operators harness this interface to estimate the network requirements, involving real-

time tasks such as bandwidth allocation for specific applications and traffic priority.

Subsequently, the underlying controllers take charge of configuring network resources and

implementing policies on network devices.

On the other hand, the SBI of the B5G-ONP serves as the juncture through which external

components managed by B5G-ONP are interconnected. This interface effectively translates

high-level network requests into actions and configurations within underlying layers according

to directives provided through the NBI by the network operators. This interface may include the

RESTCONF protocol and different standards to enable communication with other modules such

as Transport API (TAPI) [TAPI 2.1.3] or IETF RFC8345 [RFC8345]. B5G-ONP's SBI empowers

network automation tasks, such as real-time provisioning of new network equipment. These

features significantly enhance the efficiency, availability, and dependability of management

operations.

The Optical Path Computation Element module exposes an autonomous endpoints accessed by

the TAPI Optical Network Orchestrator. This interconnection allows strategic design and

deployment of B5G-OPEN networks through meticulous planning and provisioning.

In summary, the set of interfaces that the B5G-ONP is involved can be grouped in three main

interface types, that are listed as follows:

• B5G-ONP – Service/application layer Interface: the B5G-OPEN offers verticals and

service/application layer consumers both a graphical interface and an Open NBI API to

permit the orchestration in the provisioning of network services/applications, network

slices, or DSR and IP flow. Details in Section 2.11.

• B5G-ONP – Kubernetes Interface: the B5G-ONP will consume, from a client-side

perspective, the by-default Kubernetes API to, first, retrieve the necessary IT and

deployment metrics to obtain the given cluster visibility to perform deployment

recommendations, and second, to command K8s in the provision of network

applications consuming the computational resources available in the Kubernetes

cluster. More information is available in section 2.12.

• B5G-ONP – SDN Controllers Interface: This interface is a groping of interfaces devoted

to the communication of the B5G-ONP and all the SDN controllers in charge of the

different network domains to consider in the B5G-OPEN project, like IP, PON or Optical

domains. This set of interfaces is focused on retrieving network topology-related metrics

and to command SDN controllers in network slice and connection provisioning. For the

communication with each controller type a different protocols and APIs are envisaged,

as exposed previously.

 D4.2 GA Number 101016663

74

As an exemplary workflow to show how the interfaces are used, for instance, when the network

operator specifies the network requirements, the B5G-ONP initiates the process of discovering

network topologies across different segments. This initial exploration is followed by a thorough

analysis, considering both the stipulated requirements and the available resources. planning and

dimensioning tasks, informed by the results of the analysis, incorporate necessary network

adjustments aimed at enhancing performance and meeting expected KPIs. The B5G-ONP then

translates the selected solution into specific low-level commands or calls, effectively translating

them into directives for the corresponding entities via the SBI.

Once executed these actions, the orchestrator comprehensively assesses network performance

under diverse conditions to validate and ensure optimal outcomes. When external components

report metrics back to the B5G-ONP, it must adeptly interpret and represent these metrics to

network administrators, fostering a coherent understanding of network performance.

3.3 FUNCTIONAL VALIDATIONS
To ensure the reliability and effectiveness of the B5G-ONP component and the previously

described interfaces, this section includes rigorous validation tests. The objective of these tests

encompasses diverse aspects, ranging from load handling and scalability to the accuracy of

discovery processes, Kubernetes cluster deployment, and analysis module proposals, as well as

validating the functionalities that involve other external entities, e.g., verticals or SDN

controllers. By subjecting the component to these meticulous assessments, the objective is to

ensure its seamless operation under varying conditions and functionalities.

Test Description

Load and
Scalability
Test

Verify the capabilities of the B5G-ONP component to efficiently handle
anticipated user loads with minimal response times. Evaluate its ability to
dynamically scale up or down in response to demand, perform concurrent
operations, and maintain high efficiency even during stress scenarios.

Topology
Discovery
Validation

Validate the accuracy and coherence of discovery processes within both IP and
optical segments. Ensure that responses provide precise information. Assess the
GUI's ability to successfully import and visually represent the complete network
topology. This test has been validated in EuCNC demo [EuCNC] where the
scenario presented (see figure below).

Once the response from TAPI Network Orchestrator is received, these data are
represented graphically in the GUI’s Layout Window and sorted in tables within
the GUI’s Control Window.

 D4.2 GA Number 101016663

75

Connectivi
ty Service
Provision
Validation

After importing the topology into ENP tool, this allows connectivity service
provisioning to be carried out on the topology. The request is sent to the
underlaid module that exposes a NBI and after processing the request, it
responds with a status code of the operation. This process requires send the
request and check that the operation has been completed correctly.

Similar to Topology Discovery Validation, this test has also been validated in the
EuCNC demo [EuCNC], where a topology has been provisioned with two
Connectivity-Services (CSs) for sending traffic between two pair of nodes
independently.

Kubernete
s Cluster
Deployme
nt Test

Deploy containers and complete applications within the Kubernetes cluster and
assess their proper implementation and status using kube-apiserver. Evaluate
the security, scalability, and resilience of the Kubernetes cluster by progressively
increasing the workload.

Analysis
Module
Proposal
Validation

Validate the proposed analysis module by comparing its outcomes against the
current network conditions. Ensure that the proposed solution aligns with
optimal network performance.

Collectively, these validation tests serve as a comprehensive assessment of the B5G-ONP

component. By subjecting it to meticulous exam by diverse scenarios and functionalities, we

ensure its robustness, accuracy, and efficiency. The transition to the next phase of component

 D4.2 GA Number 101016663

76

integrations, as well as the insights gained from these tests will lay a strong foundation for the

convergence of the B5G-ONP within the project framework.

3.4 COMPONENT INTEGRATION
As the integration phase advances toward the integration phase within the B5G-OPEN

architecture, the functional validations performed on the B5G-ONP component have paved the

way for seamless synergies with other B5G-OPEN entities. These integration efforts not only

highlight the flexibility of the component but also promise to augment the overall effectiveness

of the architecture. The architecture defined includes different components that must be

integrated with B5G-ONP to carry out their goals:

3.4.1 Kubernetes

Kubernetes is accessible, and B5G-ONP utilizes the exposed REST API of the kube-apiserver for

automating the deployment, scaling, and management of applications. This approach aims to

construct more efficient and scalable IT infrastructures. The endpoints provided by Kubernetes

are outlined in section 4.12. These endpoints serve purposes such as resource discovery,

resource provisioning, and retrieval of performance metrics within the Kubernetes cluster.

Internal works to support Kubernetes within the E-Lighthouse Network Planner (as part of the

B5G-ONP) controller suite is already started, and preliminary results are obtained.

3.4.2 PON SDN Controller

The PON SDN Controller enables network management and automation within this domain,

utilizing the accessible tools and platforms through the NBI of the PON SDN Controller exposed

by a NETCONF/REST server. This interface allows to B5G-ONP component to provision and

configure PONs. It is pending to start this integration, expected in next stages of the project.

3.4.3 IP SDN Controller

The IP SDN Controller will provide an exposed REST API NBI, which the B5G-ONP will utilize to

send requests to essential endpoints. These requests are made to acquire topological

information about the underlying IP network, and to implement necessary configurations

following a process of analysis and resource optimization within the B5G-ONP. The IP topology,

imported in the B5G-ONP, is defined using RFC 8345 [RFC8345] and B5G-ONP includes the

methods to interpretate it. The E-lighthouse Network Planner already supports a version of the

IETF network model, capability obtained from other commercial and research projects. It is

expected to perform some adjustments to adapt it to the particularities of the B5G-OPEN

project.

3.4.4 TAPI Orchestrator

The TAPI Optical Network Orchestrator provides a consistent, open, and standardized method

for gathering information from subsystems and sub-controllers to B5G-ONP. This controller uses

TAPI 2.1.3 [TAPI 2.1.3] to export the optical topology. This integration has been proven and

validated in [EuCNC] Demonstration of SDN control of disaggregated multi-band networks with

externalized path computation.

3.4.5 OLS Controller

The OLS controller is based on the Ensemble Network Controller software solution and is

offering a northbound ONF Transport-API (TAPI) towards the Optical Controller. The topology of

the OLS Controller is based on the ONF TAPI 2.1.3 [TAPI 2.1.3] model where a topology

represents all network layers such as OCH and Photonic Media. Consequently, B5G-ONP allows

 D4.2 GA Number 101016663

77

the import of the OLS topology from the TAPI 2.1 model. The integration works presented in the

previous bullets can been seen as a starting point to integrate OLS controller in B5G-ONP.

3.5 ROADMAP
To ensure the realization of a seamlessly integrated architecture within the stipulated project

timeline, the subsequent action items have been defined:

• Q4/2023: Integration of the B5G-ONP component with the Kubernetes REST API. This

strategic integration aims to empower the architecture with the dynamic capabilities of

Kubernetes, bolstering resource management and deployment efficiency.

• Q4/2023: Refinement of the control plane specification for inclusion in M4.4 is currently

underway.

• Q1/2024: Integration and Topology Import with OLS SDN Controller. By materializing

this integration, we aim to enhance our grasp over optical resources and fortify network

orchestration capabilities.

• Q1/2024: Initial Integration and Testing with PON SDN Controller. These steps are

poised to pave the way for a harmonious interplay between these controllers and the

B5G-ONP component. This harmonization is critical in realizing an architecture that

thrives on interconnectedness and adeptly adapts to dynamic networking exigencies.

• Q2/2024: Elaborate on the specifics of the control plane architecture in D4.3 to outline

the network capabilities for zero-touch and autonomous management.

The proposed roadmap emphasizes strategic integration phases to achieve the incorporation of

the B5G-ONP component with other components into the overarching architecture. The

preceding roadmap includes diverse integration and validation tasks adapted towards improved

resource management and alignment with other controllers, putting the effort into achieving an

interconnected and adaptable architecture. By adhering to these strategic phases and

evaluating performance through defined KPIs, the B5G-ONP component is poised to play a

substantial role in propelling next-generation network paradigms within the context of the B5G-

OPEN project.

3.6 COMPONENT KPIS
As the B5G-OPEN project is geared towards enhancing the efficiency and capabilities of the

orchestrated network environment, it is necessary a quantitative assessment of performance

and efficiency. The metrics under consideration assess the time periods and latencies associated

with the discovery, analysis, sizing, and provisioning tasks executed by the B5G-ONP component.

This approach enables the computation of the efficiency and responsiveness of the component,

while also actively contributing to the attainment of the objectives set forth by the B5G-OPEN

project. The main KPIs are detailed in Table 1:

Table 1: KPIs for B5G-ONP component

KPI Definition Methodology

Topology
Discovery
Time

The time elapsed from the moment a
network operator sends the finding
command until all layer of the
topology is imported into B5G-ONP.

Measured from the SBI of the B5G-ONP. Target (<
5 seconds up to 30 seconds).

 D4.2 GA Number 101016663

78

Analysis /
dimensioning
delay

The time required to run the
algorithm/s covering dimensioning
and/or analysis functions.

Measured from the B5G-ONP console/logs. Target
(from < 1 second up to 1 minute).

Connectivity
service
provisioning
latency

Time to provision connectivity
service starting when B5G-ONP
receives a request for it and ending
when the service is properly
established.

Measured from the B5G-ONP console/logs. Target
(< 10 min with hardware and < 1 minute with
emulated hardware).

Optical Path
computation
element
latency

Refers to the time it takes to perform
a path and is directly proportional to
the number of network elements
involved in the path computation and
the traffic load on the network.

Measured in the message exchange between the
two involved entities, the PCE and TAPI
Orchestrator.

Scalability In
terms of
Number of
Elements

Number of elements that can be
controlled by a single instance

Setup scenarios (with emulated hardware)

3.6.1 Topology Discovery Time

The topology discovery of network resources increases the flexibility and efficiency within

acceptable delay. It makes the request to the defined component (mainly SDN Controller and

TAPI Network Orchestrator) to import the topology details.

The proposed solution for B5G-ONP seeks to minimize complexity and optimize efficiency by

interacting between the components to operate as efficiently as possible. The topology

discovery ends when the imported topology is represented within the Layout and Control

Windows as mentioned previously.

Regarding the network for EuCNC demo composed of 8 nodes and 16 links (small size), the

topology data were taken from T-API Network Orchestrator with a delay lower than 2 seconds.

The maximum duration of this phase is expected to be 30 seconds.

Negative Factors:

- Network size

- Software complexity

3.6.2 Analysis / dimensioning delay

Although this phase may have algorithms preloaded for execution, it requires the Topology

Discovery Time (see 3.6.1) to be able to apply these algorithms to the network infrastructure.

The execution of these analysis and dimensioning algorithms depends on the network and

algorithm complexity on which they are applied, and it is convenient to analyse them case by

case. This KPI has a significant impact on the operational efficiency of the B5G-ONP module and

aims to increase the efficiency of the networks by making decisions based on accurate and up-

to-date data. The optimization of these processes, based on traffic fluctuations or events, allows

 D4.2 GA Number 101016663

79

agile decisions that will keep the resilience of the networks and will be reflected in a significant

improvement of the user experience.

3.6.3 Connectivity service provisioning latency

The provisioning requires a previous synchronization with the existing network to abstract the

different nodes and Service Interface Points (SIPs) on which to deploy a Connectivity Service

(CS). The synchronization process runs in the Topology Discovery Time (see 3.6.1).

This interval considers the time from the provisioning request is made until the requested CS is

operative. These tasks may be carried out by a network operator or by the network orchestrator

module after makes an analysis or resource optimization.

If simultaneous provisioning requests are made, the B5G-ONP module is able to manage them

in parallel to minimize the required time for these tasks.

Regarding the network for EuCNC demo composed of 8 nodes and 16 links (small size), the demo

continued provisioning 2 CSs. The delay experienced at this stage, from the request until receive

a favourable response, was less than 2 seconds. Although the topology over which the CSs were

provisioned is small, it is not expected to observe a delay greater than 10 minutes for more

complex topologies.

Negative factors:

- Topology complexity

- Hardware configuration latency

3.6.4 Optical Path computation element latency

This KPI evaluates an efficient control of a high volume of devices between which it is intended

to establish a path for communications. This phase requires the Topology Discovery Time (see

3.6.1) to import the information related to the network and estimates the communication

latency based on certain parameters and network conditions.

The results section presents the findings based on the defined KPIs for OPCE latency such as

relationship between latency and network elements, impact of traffic load and latency

variability.

3.6.5 Scalability In terms of Number of Elements

This KPI measures the ability to optimize the network resources according to the network

elements present in the topology. For this purpose, the aforementioned planning algorithms

and AI/ML techniques are used to provide guidelines on the SDN control plane in a scenario with

a large volume of devices.

The evaluation of the KPIs allows for the assessment of the performance of the B5G-ONP

component. The acquired information evaluates aspects such as network topological

complexity, algorithmic efficiency, and the quality of operational orchestration. The values

obtained from these KPIs will prove instrumental in shaping strategic decisions within the

project. Subsequently, a roadmap for the forthcoming months of the project is outlined,

delineating the intended path to be followed.

 D4.2 GA Number 101016663

80

4 TAPI-ENABLED OPTICAL NETWORK ORCHESTRATOR WITH

EXTERNALIZED PATH COMPUTATION

4.1 INTRODUCTION
The TAPI-enabled Optical Network Orchestrator is a functional element of the architecture that

is responsible for the following functions: i) providing a uniform, open and standard view and

interface to the higher levels and components of the B5G-OPEN control, orchestration, and

telemetry system; ii) Composing a complete context to be consumed by B5G-OPEN network

planner and additional consumers combining information retrieved from subsystems and sub-

controllers (Optical Controller, external databases, monitoring systems, etc), iii) Enabling single

entry point for provisioning DSR and Photonic Media services, including externalized path

computation and iv) providing an event telemetry data source that reports events that happen

asynchronously in the network.

As shown in Figure 2-1, the TAPI-enabled Optical Network Orchestrator coordinates the

provisioning of services delegating the path computation and the actual device configuration to

specialized controllers.

Figure 4-1 B5G-OPEN Control Plane architecture for the Optical Network Control, showing the role of the TAPI

enabled Optical Network Orchestrator with Externalized Path Computation.

 D4.2 GA Number 101016663

81

4.2 INTERNAL ARCHITECTURE
The core of the TAPI Optical Network Orchestrator controller is an asynchronous event loop. On

the one hand, it exports multiple services via its multiple North Bound Interfaces (NBI) to users

or clients, using RESTCONF/YANG. The most relevant services are Topology Management,

Connectivity Service Management and Path Computation.

The RESTCONF server is responsible for processing requests using the RESTCONF protocol. The

Yang models are a subset of the ONF TAPI v2.1. Service requests are mapped to internal

structures and processed by functions in the event manager. The TAPI-enabled Optical Network

Orchestrator is a multi-threaded application, written in C++. It targets GNU/Linux systems (e.g.,

Ubuntu 20.04 and later) and can be executed as docker containers. The design is highly modular,

so additional functionality can be implemented as shared link libraries that can be configured

and loaded on demand. The block design of the controller can be seen in the Figure below

(Figure 4-2), showing its key North Bound Interfaces (TAPI Connectivity, TAPI Topology and TAPI

Path Computation) and telemetry data source using Redis (see Telemetry Section) as well as its

East Bound Interface towards the Path Computation Function

Figure 4-2 B5G Internal module architecture of the B5G-OPEN TAPI enabled Optical Network Orchestrator with

Externalized Path Computation

Along with the core TAPI orchestrator, a Graphical User Interface (GUI) is provided to operate

the underlying network. In this sense, the TAPI orchestrator can be used by a human operator,

in addition to other entities consuming the NBI.

The GUI (see Figure 4-3) is implemented as a Web Application, using the Angular framework. It

can be used to visualize the network topology and associated resources, the status of the links

and to perform operations such as path computation or service provisioning.

TAPI
Connectivity

RestConf server

TAPI
Topology

TAPI
Path Comp

Event
Serializer

Kafka/Redis Client

SBI Protocols

ONOS
Native

Topology
Client

External
Services

RESTCONF
TAPI

Client

Topology
Service

Path Comp
Service

Event
Manager

Connectivity
Services DB

(LSPDB)

Network
Topologies DB

(TED)

Provisioner

Path
Provisioning

Service
Path

Computation
Service

Algorithm
DB

Discovery Device
Manager

Management
&

Configuration

Get/Set

Get

Get

Query Query

Query

 D4.2 GA Number 101016663

82

Figure 4-3 the Graphical User Interface of the TAPI enabled Optical Network Orchestrator with Externalized Path

Computation

4.3 INTERFACE SPECIFICATION
This section lists the Interfaces that have been implemented in the TAPI Network Orchestrator,

as described in Section 2.

4.3.1 North Bound Interface (NBI) towards the B5G-ONP

The TAPI Optical Network Orchestrator exports multiple services via its multiple North Bound

Interfaces (NBI) to users or clients, using RESTCONF/YANG. The most relevant services are

Topology Management, Connectivity Service Management and Path Computation. This

interface is based on TAPI (see Section 2.3).

In particular, the TAPI Optical Network Orchestrator receives a new connection request with

some requirements (source and destination, bandwidth provision, latency constraints, QoT

conditions, etc.).

4.3.2 South Bound Interface (SBI) towards ONOS Native Interface

The interface from the TAPI Optical Network Orchestrator to the optical controller has been

implemented based on the ONOS native interface, extending the existing implementation to

support additional requirements and use cases. The figures below show examples of the

topology retrieved by the TAPI orchestrator from the underlying ONOS in demonstrations

carried out in EuCNC’23 and ECOC’23.

"devices" : [
 {
 "annotations" : {
 "driver" : "openroadm",
 "gridX" : "500.0",
 "gridY" : "500.0",
 "ipaddress" : "10.100.101.13",
 "locType" : "grid",
 "name" : "ROADM-3",

 D4.2 GA Number 101016663

83

 "openroadm-node-id" : "OpenROADM",
 "port" : "2022",
 "protocol" : "NETCONF"
 },
 "available" : true,
 "chassisId" : "1",
 "driver" : "openroadm",
 "humanReadableLastUpdate" : "connected 23h43m ago",
 "hw" : "GenericROADM",
 "id" : "netconf:10.100.101.13:2022",
 "lastUpdate" : "1670842572894",
 "mfr" : "CNIT-CNR-TIM-SSSA",
 "role" : "MASTER",
 "serial" : "123456",
 "sw" : "2.2.0",
 "type" : "ROADM"
 },
 {
 "annotations" : {
 "driver" : "client-line-terminal-device",
 "gridX" : "600.0",
 "gridY" : "850.0",
 "ipaddress" : "10.100.101.24",
 "locType" : "grid",
 "name" : "Transp-4",
 "port" : "2022",
 "protocol" : "NETCONF"
 },
 "available" : true,
 "chassisId" : "80",
 "driver" : "client-line-terminal-device",
 "humanReadableLastUpdate" : "connected 23h43m ago",
 "hw" : "0.2.1",
 "id" : "netconf:10.100.101.24:2022",
 "lastUpdate" : "1670842575004",
 "mfr" : "NOVENDOR",
 "role" : "MASTER",
 "serial" : "0xCAFEBEEF",
 "sw" : "0.2.1",
 "type" : "TERMINAL_DEVICE"
 },

"ports" : [
 {
 "annotations" : {
 "grid" : "50000000000",
 "logical-connection-point" : "DEG3-TTP-RX",
 "maxFrequency" : "196100000000000",
 "minFrequency" : "191350000000000",
 "openroadm-circuit-pack-name" : "twin-wss",
 "openroadm-logical-connection-point" : "DEG3-TTP-RX",
 "openroadm-node-id" : "OpenROADM",
 "openroadm-partner-circuit-pack-name" : "twin-wss",
 "openroadm-partner-port-name" : "3-1-TX",
 "openroadm-port-name" : "3-2-RX",
 "portName" : "3-2-RX",
 "reverse-port" : "31"

 D4.2 GA Number 101016663

84

 },
 "element" : "netconf:10.100.101.13:2022",
 "isEnabled" : true,
 "port" : "32",
 "portSpeed" : 0,
 "type" : "oms"
 },

4.3.3 Interface towards the Path Computation Element (PCE)

The interface from the TAPI Optical Network Orchestrator to the path Computation Engine is

based on a specific instance of path computation interface defined in TAPI (as detailed in Section

2.3 for Path Computation). Figure 4-4 shows both the workflow and Wireshark capture of the

exchanges between the TAPI Orchestrator and the O-PCE. Regarding the workflow, the operator

requests a Digital Signal Rate (DSR) service between transceiver’s client ports. The request

contains the identifiers of the Service Interface Points (SIPs, transceiver client ports); the

requested bit rate (e.g., 100G, 200G, 400G) and any applicable routing and topological

constraints. The SDN controller delegates the computation to the externalized routing engine of

the PCE that explores the PLI-aware RSMA platform. Upon successful completion, it provides the

number of required OTSi and, for each OTSi, the path in terms of links, the number of frequency

slots and the selected transmission system parameters (note that in this work we have

considered single OTSi). The SDN controller instantiates the DSR, OTSi and MC layers connection

and connection end point (CEPs) objects, it configures the transceivers’ operational modes and

the media channels in the ROADM devices via the SBI interface.

 D4.2 GA Number 101016663

85

Figure 4-4 the Graphical User Interface of the TAPI enabled Optical Network Orchestrator with Externalized Path

Computation

4.3.4 Interface towards the Telemetry System

The interface towards the Telemetry System relies on acting as a REDIS client sending telemetry

information following the TAPI Reference Implementation Agreement (RIA) for streaming TR-

548. This interface has been listed in Section 2.7

 D4.2 GA Number 101016663

86

4.4 COMPONENT INTEGRATION
The TAPI-enabled optical network orchestrator integrates with the following elements:

4.4.1 B5G-ONP

The B5G-ONP: This functional entity is the main client of the controller. The B5G-ONP performs

requests related to service provisioning in the optical network, using TAPI and requesting DSR

connectivity services. This has been shown in [EuCNC] Demonstration of SDN control of

disaggregated multi-band networks with externalized path computation.

4.4.2 PCE

The Optical Path Computation Element (PCE): The network orchestrator relies on a dedicated

system for externalized path computation. For this, it uses extended TAPI interfaces for the

purposes of topology discovery and path computation functions. This is shown in [EuCNC]

Demonstration of SDN control of disaggregated multi-band networks with externalized path

computation and [RCasOFC22]

4.4.3 Telemetry System

The Telemetry system: Acts as a data source for the reporting of events. This means that the

TAPI orchestrator sends JSON encoded telemetry data to clients, such as OSS or data visualizers

[OFCDemo]

Figure 4-5 Distributed architecture supporting intelligent Optical measurement Aggregation and Streaming Event

Telemetry [Vel23]

This is shown in Distributed architecture supporting intelligent Optical measurement

Aggregation and Streaming Event Telemetry (Figure 4-5).

4.4.4 ONOS SDN controller

The ONOS SDN controller: Takes care of provisioning connectivity by means of optical

connectivity intents, using a dedicated interface. The interface shall be augmented to support

the specification of a computed path (in terms of links as well as frequency ranges for the optical

media channel to be used).

E

M

 D4.2 GA Number 101016663

87

4.5 FUNCTIONAL VALIDATIONS
The following tests is a non-exhaustive list of tests that have been done to validate the

component:

4.5.1 TAPI Orchestrator / SDN Controller Integration, Discovery

- Description: Launch the TAPI orchestrator and retrieve the topology in terms of nodes

and links and display this information. This test shall be carried out by i) loading the

information from a set of JSON files that have previously been retrieved and ii)

performing dynamic loading of links and related data from the ONOS instance.

Figure 4-6 TAPI Network Orchestrator showing the topology retrieved from ONOS

The TAPI Orchestrator has been integrated with the ONOS controller and we have retrieved the

ONOS topology, via a VPN tunnel connecting CTTC and CNIT premises. The latency in this case is

largely affected by the propagation delay between the hosts and related overhead. Based on

the logs, shown next, we can estimate the initial latency and synchronization:

[INF] T 0 [2023-09-14 09:35:09.892694994] CTTC TAPI Network Orchestrator v20.6.4.0 ---
[INF] T 0 [2023-09-14 09:35:09.892932766] Exec: /adnet/cttc-pce-20.6.4/bin/pced
[INF] T 0 [2023-09-14 09:35:09.892994755] Conf: pced.conf
(...)
[DBG] T 126 [2023-09-14 09:35:09.950986591] [ONOS_WRAPPER]: retrieve
http://172.19.18.89:8181/onos/v1/links
(...)
[DBG] T 126 [2023-09-14 09:35:10.931894182] [ONOS_WRAPPER] retrieved 9 operational modes
(...)
[DBG] T 126 [2023-09-14 09:35:10.935659537] [ONOS_WRAPPER]: GET
http://172.19.18.89:8181/onos/v1/devices/netconf%3A10.100.101.13%3A2022/ports
[DBG] T 126 [2023-09-14 09:35:11.917683018] [ONOS_WRAPPER]: checking channels...
[DBG] T 126 [2023-09-14 09:35:11.917753660] [ONOS_WRAPPER]: GET
http://172.19.18.89:8181/onos/optical/links/perBandChannels
[VRB] T 126 [2023-09-14 09:35:12.565778947] [ONOS_WRAPPER]: total number of registered_channels 132
[-1371..467] [184531250000000 196018750000000
~

 D4.2 GA Number 101016663

88

Initial TAPI Orch / ONOS Controller synchronization: O(3s) [via VPN/Internet, debug mode and

logging]

4.5.2 TAPI Orchestrator Context Retrieval and Service Provisioning

- Description: Retrieve the TAPI context from the TAPI orchestrator and validate the

topology in terms of nodes and links. Validate that the TAPI context is correct and

consistent and can be consumed by: i) B5G-ONP clients as well as ii) Path Computation

Elements

The GUI Can be used to verify that the Context can be retrieved and to request service

provisioning as detailed earlier in the document.

Figure 4-7 TAPI Network Orchestrator showing the TAPI context

4.5.3 REDIS Integration with B5G-OPEN Telemetry System

- Description: Load a topology and validate that the TAPI orchestrator is able to report

Telemetry data to the REDIS database that is part of the Telemetry System.

This has been carried out in the context of a demonstration in OFC.

4.5.4 Externalized Path Computation

- Description: Perform an externalized path computation and validate the function using

an external PCE with TAPI enabled interface.

This section details the externalized path computation, supported over a distributed control

plane testbed that consist of the CTTC TAPI Orchestrator and OLC-E’s MB-PCE (with IP, e.g.,

 D4.2 GA Number 101016663

89

10.8.0.6) which are connected via tunnels over the public Internet. The emulated network is BT’s

optical mesh that consists of 22 ROADM nodes, 56 amplifiers, 28 terminal devices (106 network

elements in total) and 238 unidirectional links. For the scope of this experiment, it is assumed

that each link may support E, S, C and L bands. We have developed hypothetical scenarios where

multiple connection requests need to be provisioned between the node_ROADM1 and the

node_ROADM2 where computational task to the MB-PCE which, upon request, retrieves (if

needed) the network topology and the list of active services/connections. Subsequently, the

MB-PCE executes the PLI-aware RMSA algorithm and for each of these requests it returns to the

optical SDN controller the selected path as well as the configuration details and their operational

parameters for each network element along this link.

Figure 4-8 BT 22-ROADM node used in Path computation KPI validation.

For such scenarios, the MB-PCE is instructed to iterate available bands with the same order of

preference as {C, E, L, S1, S2} so if the C-band is not available, the routing engine proceeds to

the second best which is the E-band and so on. We wish to investigate the effectiveness of the

MB-PCE and its behaviour/response against legitimate and illegitimate instructions from the

OMB SDN controller. The latter could be misconfigurations or even deliberate/malicious acts.

Scenario A: the 400G DSR service between two transceivers at the source-destination nodes,

node_101 and node_102 is indicated by means of the corresponding Service Interface Points

(SIPs) - the 400G line-rate is based on a 16QAM, 48 Gbaud symbol-rate transceivers. The selected

powers render the C-band unusable as the RMSA algorithm returns no route for the connection

requests. As a result, the algorithm proceeds to assess the potential of the E-band to support

the connection service (second band in the list) and it, indeed, grants these requests to the E-

band. It is critically important for network operators that no misconfigured paths for the

connection requests are selected.

 D4.2 GA Number 101016663

90

Scenario B: The procedure of Scenario A is repeated and the optical SDN controller sends

sequentially 3 service requests but now, the MB-PCE is instructed to launch the power of the C-

band channels at +0.6 dBm per channel (the E-band uses the optimal launch power). The first

two requests are granted in the C-band albeit the PLI-aware RMSA algorithm selects a larger

guard-band between the channels serving these two successive requests. In particular, the two

requests are allocated to channels spectrally space by 162.5 GHz (or 13 FSUs) which corresponds

to over three times the channel’s optical bandwidth. At such wide guard-band, the effect of XCI

is minimized.

Scenario C: the same processes are repeated but this time the optical SDN controllers sends to

the MB-PCE, five service requests sequentially designating a -3.7 dBm launch power for all of

them which is with acceptable range of powers (albeit non-optimal). Given the light traffic load,

the PLI-aware RMSA does not observe any OSNIR degradation, so all service requests are

granted spectrally successive channels in the C-band. Also, of interest is to measure the response

time (latency) needed to complete the provisioning processes in the three scenarios. These

messages include the messages sent by the optical SDN controller to the MB-PCE related to the

TAPI operations to synchronize and update the MB-PCE on the current network status. It is

pointed out that as part of further optimization of the control-plane operations, only the initial

synchronization is mandatory; beyond that, only the synchronization for the status of the active

services is necessary.

4.6 ROADMAP
At the time of writing, the key features for the TAPI Network Orchestrator have been introduced

and validated with bilateral integrations. In the remaining of WP4, the ongoing activities are:

- New extensions as needed in view of new studies to be carried out.

- Extensions for the multi-domain in a transparent setting.

- Integration with data plane in the scope of WP5

4.7 COMPONENT KPIS
This section details the KPIs that have been defined for the component.

KPI Definition Methodology

Service
Provisioning
Latency

This is the time it takes to provision
an optical service.

WP4 scope to be detailed with
emulated hardware.

Measured from the NBI. Target (< 10 min with
hardware and < 30 seconds with emulated
hardware).

Service
Provisioning
Overhead

In terms of messages, message size,
encoding, etc. This includes a
characterization of the protocol
overhead (e.g., HTTP, RESTCONF,
etc).

Measured from the NBI. Target (< 10 min with
hardware and < 30 seconds with emulated hw).

Path
Computation
Latency

Measured as the time it takes to
perform a path computation with a
dedicated PCE

Measured in the message exchange between the
two involved entities.

Scalability In
terms of

Number of elements that can be
controlled by a single instance

Setup scenarios (with emulated hardware)

 D4.2 GA Number 101016663

91

Number of
Elements

Provisioning
Rate

Number of connections that can be
served.

Setup scenarios (with emulated hardware)

4.7.1 Service Provisioning Latency

As baseline, we consider [Metro-Haul] serialized provisioning targeting, as KPI the order of

minutes. We can achieve Setup Time Reduction on the average setup time of connectivity

service by 30% compared to serialized provisioning, exploiting approaches relying on parallelism

and concurrency at the expenses of more complex workflows. This can be achieved depending

on whether hardware configuration is slow.

This period varies from seconds to several minutes according to several factors as the network

size, complexity, and efficiency of the orchestrator. With existing prototypes, service

provisioning without data plane integrating key control plane elements, service provisioning can

achieve sub-second provisioning. With no hardware latency and with simplified path

computation algorithms (e.g., a k-shortest path with spectrum continuity) O(nanoseconds /

milliseconds)

Order of Seconds / Minutes when considering PLI PCE (EuCNC demo / JOCN paper)

Negative Factors

- Hardware configuration latency
- Algorithm complexity
- Control Network dimensioning (latency)

4.7.2 Service Provisioning Overhead

The overhead is contemplated in terms of RESTCONF messages for a service provisioning (see

Section 4). For a service provisioning, example:

POST http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-
connectivity:connectivity-context

{
 "tapi-connectivity:connectivity-service" : [
 {
 "connectivity-constraint" : {
 "connectivity-direction" : "BIDIRECTIONAL",
 "requested-capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 400
 }
 }
 },
 "direction" : "BIDIRECTIONAL",
 "end-point" : [
 {
 "direction:" : "BIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "LAYER_PROTOCOL_QUALIFIER_UNSPECIFIED",
 "local-id" : "8eb843ff-ea74-5b5d-a8c0-661673b6c823",
 "service-interface-point" : {
 "service-interface-point-uuid" : "8eb843ff-ea74-5b5d-a8c0-661673b6c823"

http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context
http://127.0.0.1:4900/restconf/data/tapi-common:context/tapi-connectivity:connectivity-context

 D4.2 GA Number 101016663

92

 }
 },
 {
 "direction:" : "BIDIRECTIONAL",
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "LAYER_PROTOCOL_QUALIFIER_UNSPECIFIED",
 "local-id" : "7c09f268-6b42-5c30-b02a-b8b54a0ff7c5",
 "service-interface-point" : {
 "service-interface-point-uuid" : "7c09f268-6b42-5c30-b02a-b8b54a0ff7c5"
 }
 }
],
 "layer-protocol-name" : "DSR",
 "layer-protocol-qualifier" : "LAYER_PROTOCOL_QUALIFIER_UNSPECIFIED",
 "requested-capacity" : {
 "total-size" : {
 "unit" : "GBPS",
 "value" : 400
 }
 },
 "route-objective-function" : "26000",
 "uuid" : "d71187bc-2947-11e8-b467-0ed5f89f718b"
 }
]
}

Response: 201 Created
Location

 The overhead is mostly of the order of a few Kbytes. In case the client needs to retrieve the

context, the size may increase to a few hundreds of Kbytes or Megabytes (depending on network

size). This exchange takes on the order of a few milliseconds and the overall latency is mostly

determined by the lower layers and the data plane.

4.7.3 Path Computation Latency

The PCE latency for scenario C was measured to be in the range between 1.8 – 2.2 seconds. This

value depends on whether the PCE is also tasked to retrieve the network topology as explained

above (first request in the series). On the contrary, this latency is two orders of magnitude lower,

ranging between 17ms and 36 ms, when the network status was already UpToDate up to date

(other requests assuming state synchronization). In contrast, for scenarios A and B, the

deliberate degradation of the OSNIR rendered a large number of the listed frequency slots as

‘unavailable/void’, so the RMSA algorithm had to execute the PHY layer validation process

thousands of times resulting to considerable delays for the MB-PCE to return results. For these

two scenarios A and B, the latency is measured to be between 2.5 and 3.2 seconds.

To meet such a KPI, let us note the importance to incorporate to the routing engine a PLI-aware

RMSA based on closed-form expression as this is the only way to attain service provisioning

within a time frame compatible to the dynamicity of the events. This is particularly true as the

projected capacity for the F6G transportation network would entail several hundred connection

requests. Moreover, to ensure the scalability, it is crucial to use rapidly converging algorithms

to determine the optimization launch power per band or even per channel.

Path Computation Latency for a 22-node network O(10s)

4.7.4 Scalability in Number of Elements

This KPI is related to K7.3 10x number of controlled devices, based on advanced SDN

deployments with microservice-based lightweight virtualization and hierarchical arrangements

 D4.2 GA Number 101016663

93

and device / node abstraction. Metro-Haul targeted SDN Control of Scenarios of the order O(10)

elements.

B5G-OPEN TAPI Network orchestrator is able to deal with a large number of nodes and links. For

example, in the topology below represents Telefonica photonic topology. It consists of 108

nodes. 376 bundles (with 1, 2, 4 or 8 links per bundle) and over 100k client ports. In this case,

the scalability issue is defined by the number of active Netconf connections to the devices.

Figure 4-9 Telefonica topology to validate scalability.

4.7.5 Provisioning Rate

This KPI is related to Service Provisioning (with same theoretical assumptions). The control plane

can theoretically support hundreds of connection requests per second for small (<10-100)

network sizes. Metro-Haul targeted SDN did not cover high-rate provisioning, and requests were

manually triggered.

Negative Factors

- Hardware configuration latency

- Algorithm complexity

- Control Network dimensioning (latency)

In general, we can only guarantee sub-second provisioning in very specific scenarios. Updated

Target in the order of seconds/minutes

 D4.2 GA Number 101016663

94

5 PATH COMPUTATION ELEMENTS – PCE

5.1 INTRODUCTION
The Multi-Band Path Computation Engine (MB-PCE) (cf. Figure 5-1)is based on a multi-band

routing engine which ensures that: i) routing is implemented by means of an efficient spectrum

and modulation-format assignment; and ii) the impact of physical layer effects over the selected

optical paths is estimated and the results are benchmarked against QoT target values (BER,

OSNIR, OSNR, etc). In this way, the planning tool ascertains the conditions that maximize the

total capacity of the network while it minimizes the global blocking probability and prevents

network misconfiguration.

Figure 5-1 B5G-OPEN Control Plane architecture for the Optical Network Control, showing the role of the Multi-Band

Path Computation Engine (MB-PCE).

5.2 INTERNAL ARCHITECTURE
The MB-PCE functionality is realised in three stages as follows, while is illustrated in Figure 5-2.

STAGE-I: Network Topology Implementation: the network topology is defined by setting the

connectivity pattern between the nodes and the traffic matrix. Next, the k-shortest paths for all

network node pairs are derived. More specifically, in this step, the following quantities are

defined: the network topology including nodes, edges and amplifiers, the available optical

bands, the capacity per band, the traffic matrix, the average time duration of the demands and

the average inter-arrival time between two consecutive demands, as well as the available line-

rates and their distribution on the demands.

STAGE–II: Spectral and Modulation Assignment (SMA) and PL entanglement: the operation is

completed in two steps: In the first step, i) a preliminary spectrum and modulation format

assignment (SMA) is made for a number of the k-shortest paths, and ii) the Optical Signal to

Noise plus Interference Ratio (OSNIR) for these shorter paths is estimated taking into account

the impact of the physical layer effects by means of closed-form expressions.

In the second step, the Optical Multi-band Physical Layer Aware Routing Modulation and

Spectral Assignment (OMB-PLA-RMSA) algorithm either selects or rejects a lightpath. A path is

rejected if a) no contiguous spectral slots are available in any optical band to support the end-

to-end connection, b) either the OSNIR of the candidate lightpath falls short of the QoT

estimator threshold or the OSNIR of at least one of the already established lightpaths would

 D4.2 GA Number 101016663

95

perform below the QoT threshold due to the presence of this candidate lightpath. In either (a),

(b) cases, the rejected lightpath is assigned the next available path from the sorted list of k-

shortest paths and it is then re-iterated. If these paths are all rejected, the first step is repeated

using a lower cardinality SMA values. If no path is retained, the engine registers a blocking

condition.

STAGE–III: Path Allocation: This is the stage where the lightpaths are established in the network.

The final assessment on network’s throughput is completed and a lightpath is successfully set if

contiguous spectral slots are available over the end-to-end transparent path with acceptable

physical layer performance (above the QoT estimator threshold). The successful establishment

of a lightpath triggers the update of the corresponding arrays for each link of the path, e. g.,

arrays of power, modulation format, consumed frequency slots.

Figure 5-2 The flow chart of a multi-band PCE operation.

5.3 INTERFACE SPECIFICATION
This section lists the Interfaces that have been implemented in the Multi-Band Path

Computation Engine. The MB-PCE uses two interfaces to communicate with the TAPI Optical

Network Orchestrator

 D4.2 GA Number 101016663

96

5.3.1 South Bound Interface (SBI) towards the TAPI Optical Network Orchestrator

The first interface is based on TAPI v2.1 and it is exposed by the TAPI Optical Network

Orchestrator. MB-PCE uses this interface in order to retrieve the current optical network

topology and status.

The operation of the specific interface was demonstrated in EuCNC’23 and ECOC’23.

5.3.2 North Bound Interface (NBI) towards the TAPI Optical Network Orchestrator

The second interface is exposed by the MB-PCE. It is again based on TAPI v2.1 and it is used by

the TAPI Orchestrator. The TAPI Orchestrator request a path computation from the MB-PCE.

The MB-PCE analyses the request and computes the optimum path and send this information

back to the TAPI Orchestrator.

The operation of the specific interface was demonstrated in EuCNC’23 and ECOC’23.

5.4 COMPONENT INTEGRATION
The Multi-Band Path Computation Engine integrates with the following element:

5.4.1 TAPI Optical Network Orchestrator

The MB-PCE communicates with the TAPI Optical Network Orchestrator to realise two

functionalities: a) Retrieve optical network topology; b) Path computation for a new service

request.

Initially, MB-PCE communicates with the TAPI Optical Network Orchestrator using the TAPI v2.1

interface to retrieve the current optical network topology context and status.

Then, MB-PCE receives a new service request from the TAPI Optical Network Orchestrator using

the TAPI v2.1 interface. The MB-PCE compute the optimum path and send this information back

to the TAPI Optical Network Orchestrator.

5.5 FUNCTIONAL VALIDATIONS
The following tests is a non-exhaustive list of tests that have been done to validate the

component:

5.5.1 Network Discovery

Description: We launched the MB-PCE and retrieved the topology from TAPI Optical Network

Orchestrator in terms of nodes and links and we displayed this information. This test was carried

out: i) loading the information from a set of JSON files that have previously been retrieved and

ii) performing dynamic loading of links and related data from the TAPI Optical Network

Orchestrator.

This has been carried out in the context of EuCNC’23 and ECOC’23 demonstrations.

5.5.2 Path Computation

Description: The MB-PCE received a new service request from TAPI Optical Network

Orchestrator and validated that: a) the path is properly estimated; b) the correct band is

selected; c) the number of frequency allocations units are correctly assigned; d) the correct

 D4.2 GA Number 101016663

97

frequencies are assigned to the service; e) the correct message is generated and send back to

TAPI Optical Network Orchestrator.

This has been carried out in the context of EuCNC’23 and ECOC’23 demonstrations.

5.6 ROADMAP
At the time of writing, the key features for the Multi-Band Path Computation Engine have been

introduced and validated with bilateral integrations. In the remaining of WP4, the ongoing

activities are:

- New extensions as needed in view of new studies to be carried out.

- Integration activities under the scope of WP5

5.7 COMPONENT KPIS
This section details the KPIs that have been defined for the component and the results.

KPI Definition Methodology Results

Path
Computation
Latency

This is the time it takes to
MB-PCE to compute the
path of a new service
request.

Measured from the
timestamps between
request and response.
Target (< 40s).

Several scenarios were
executed. The MB-PCE
Path Computation
Latency was measured to
be in the range between
1.8 – 3.2 seconds

TAPI
Topology
retrieval and
parsing
Latency

This is the time it takes to
MB-PCE to retrieve and
parse the optical network
topology context
(described using the TAPI
format).

Measured from the
timestamps between
request and response.
Target (< 20s).

Several scenarios were
executed. The MB-PCE
Topology retrieval and
parsing Latency was
measured to be in the
range between 0.9 – 2.5
seconds

 D4.2 GA Number 101016663

98

6 OPTICAL CONTROLLER

6.1 COMPONENT ARCHITECTURE AND PROGRESS DURING B5G-OPEN
The optical controller is based on results of the ONOS open-source project [ONOS] that, besides

the control of optical devices, also provides a suitable environment for the control of packet

devices (e.g., based on OpenFlow or P4Runtime protocols).

The main roles of the optical controller in the B5G-OPEN project are: (i) retrieve device

descriptions from data plane and abstract them toward the upper control layers; (ii) receive the

service configuration requests by the upper control layers and translate such requests in a set

of configuration messages to be forwarded to each involved device.

The ONOS version available at the B5G-OPEN starting time was already providing a rich NBI

based on REST APIs and, on its SBI it was already able to connect to a variety of packet and

optical devices (e.g., exploiting NETCONF protocol). Also, the ONOS core already implements the

basic connectivity services using the concept of intent that simplify and automate the service

management (e.g., in case of network failure).

However, considerable development within the ONOS controller has been performed during

B5G-OPEN at several levels: in the NBI, in the SBI and in the Core for introducing the following

features:

1. Enable integration with T-API orchestrator (NBI)

2. Develop drivers toward new devices and update existing drivers against the most recent

versions of standard models (SBI)

3. Introduce the support of flexible grid (NBI, core, SBI)

4. Introduce the support of multi-band (NBI, core, SBI)

5. Import/Export description of operational modes supported by transceivers/pluggables

(SBI, NBI);

6. Activate intents using as end-points the ROADM’s ports (Core).

In the figure below the aforementioned development tasks (from 1 to 6) are mapped within the

ONOS architecture, where each number is reported in the affected blocks. Blocks reported in

white are not modified during the project, block reported in green are upgraded during the

project, while blocks reported in orange are specifically created during the project.

 D4.2 GA Number 101016663

99

Figure 6-1 internal architecture of the optical controller, based on ONOS open-source software.

6.2 INTEGRATION WITH OTHER COMPONENTS AND INTERFACES SPECIFICATION
The ONOS optical controller integrates with the following elements:

- The TAPI orchestrator. This entity uses the REST APIs developed on top of the ONOS

controller. 1) It uses POST (and DELETE) calls to perform requests related to service

provisioning (and deletion) in the optical network. 2) It uses GET calls to retrieve

information regarding network topology and details regarding links and devices (e.g.,

description of operational modes supported by transceivers). The implemented REST

interfaces (i.e., the “optical model APIs” as named in Fig. 45) is accurately described in

Sec. 4.5.

- The data plane devices (i.e., packet-optical nodes, transponders, ROADM and OLS). Such

devices expose to the SDN optical controller a YANG model based on OpenConfig or

OpenROADM running a NETCONF server, as respectively described in Sec 4.1, and 4.6.

The ONOS controller uses a NETCONF client to retrieve information and configure such

devices.

6.3 ROADMAP
At the time of writing, most of the described features for the SDN optical controller node have

been introduced and validated with bilateral integrations. Such features have been

demonstrated in an emulated environment during the review meeting and in the ECOC 2023

conference [GioDemo23]. In the remaining of WP4, the ongoing activities are:

• Enhancement of the ONOS drivers to support ROADM devices based on OpenROADM

version 12.1 as described in Sec. 14.

• Deployment of an emulated multi-domain environment exploiting multiple optical

controllers.

 D4.2 GA Number 101016663

100

• Enhancement of the ONOS intent service to support intents requests in multi-domain

scenarios, e.g., requests starting in a transceiver interface and terminating in a ROADM

interface.

6.3.1 Open-source contributions

The following extensions to the ONOS software have been submitted to the open-source

community:

- Driver for Cassini transceiver running proprietary NOS (merged, December 2022)

- https://gerrit.onosproject.org/c/onos/+/25168

- Extension for the support of flexi-grid (merged, February 2023)

- https://gerrit.onosproject.org/c/onos/+/25594

- Extension for the support of multi-band (merged, October 2023)

- https://gerrit.onosproject.org/c/onos/+/25596

- Extension for the support of intents between OCH ports of ROADMs (under revision)

- https://gerrit.onosproject.org/c/onos/+/24715

Other contributions are expected in the next months:

- Extended NBI providing “Optical model REST APIs” (under testing)

- Upgrade of OpenROADM driver to model version 12.1 (to be developed)

- Further extension of intent service (to be developed)

6.4 FUNCTIONAL VALIDATION

Tests have been done to validate the optical SDN controller in emulated environment.

- Network discovery in emulated environment: Launch the ONOS controller, including

required applications and drivers. Post an emulated network topology including devices

and links. Verify that all devices are correctly discovered, including interfaces and

augmented details (e.g., related to physical impairments).

 D4.2 GA Number 101016663

101

Figure 6-2 Network discovery validation. The ONOS web-gui shows that emulated devices are correctly discovered

both in the CNIT deployment and in the CTTC deployment. Also, this ONOS controller is connected through an

OpenVPN to the T-API orchestrator that is located at CTTC.

- Network abstraction in emulated environment: After network initialization, verify that

all the acquired information regarding devices is correctly exported in the REST APIs

toward upper layers.

- Service provisioning (involve NBI, core and SBI), emulated environment: Receive an

intent request from the TAPI orchestrator (for several types of intent). Verify that the

intent is correctly installed and that all involved devices are correctly configured.

- Device tests (mainly involve SBI), real devices: Push a specific device, test connectivity,

device discovery and the ability to properly discover all the device details.

6.5 SCALABILITY ASSESSMENT AND KPIS
This section describes the assessment of the open source ONOS controller on realistic network

scenarios like the ones TIM is demanded to operate on field. The assessment has been

performed on emulated networks whose topology and requirements, in terms of services to be

carried, are taken from operating TIM metro regional DWDM infrastructure. For the purpose of

these tests, three TIM metro regional networks with different features have been identified and

some automation tools have been developed.

6.5.1 Network emulator

The emulator of the disaggregated optical network is based on two main components:

• The ONOS SDN controller.

 D4.2 GA Number 101016663

102

• A flexible NETCONF agent based on OpenROADM models, implemented as a docker
container emulating a single device (ROADM or transponder).

For running the emulator two virtual machines (VM) are deployed on the Proxmox cluster

available in the TIM laboratories.

The first VM, dedicated to the ONOS controller, has the following features (in line with ONOS

requirements):

• 2 processors.

• 16 GB RAM.

• 100 GB HDD.

ONOS was executed directly on the VM operating system (Ubuntu 18.04.2 LTS) and was

configured to run the gui, openroadm, optical-rest and drivers.odtn-driver applications. The

ODTN-driver implements the extensions required to control OpenROADM based ROADMs. Some

small enhancements and bug fixes have been applied to it for these tests. The source code

including these enhancements has been uploaded to the ONOS GitHub repository. The most

significant enhancement to the ODTN-driver is the support of OpenROADM based transponders.

Unlike the previously described contribution, the code for OpenROADM based transponders is

not yet shared with the ONOS developers’ community. Other small addons, specifically related

to these tests, are the inclusion in the ONOS GUI of the background maps of the involved Italian

regions.

The second VM runs all the containers, one for each device, needed to emulate the network. Its

features are the following:

• 6 processors.

• 32 GB RAM.

• 72 GB HDD.

Docker version 18.09.2 (API version 1.39) is installed on the VM based on Ubuntu 22.04.3 LTS.

However, the emulator has no dependencies on specific docker version. Two images are loaded

on the local docker image repository, one for the ROADM emulator and one for the transponder

emulator. Both images are based on the NETCONF server developed by TIM.

The two VMs are hosted on two separate servers interconnected by a 1 GB LAN. Given the

possibly high number of devices building the emulated networks, a tool has been developed to

automate the containers’ start-up and the ONOS configuration. The tool takes as input a

configuration file describing the emulation environment and two files describing the network

(devices and links) to perform the following steps:

• Starting from templates, it creates the datastore files for each device.

• It starts all the docker containers emulating single devices (a container instance for
every node).

• It creates ONOS device configuration (JSON file as required by ONOS native API).

• It sends device configuration to ONOS, waiting for all the devices to become ready.

• It creates ONOS link configuration (JSON file as required by ONOS native API).

• It sends link configuration to ONOS.

The same tool can be used to stop the emulation environment: it stops and removes all the

containers and clears all the configuration from ONOS.

 D4.2 GA Number 101016663

103

Another tool has been developed to automate setup of the circuits between client transponders’

ports. The tool parses an input file describing the connection to be setup and asks ONOS, via

REST API, to create the intent between the client ports of a source and a destination

transponder. Then it waits for the status of the intent to be either ‘INSTALLED’ or ‘FAILED’.

6.5.2 Reference networks

To assess the scalability of the ONOS controller, three DWDM transport networks of different

sizes were identified. The networks have been chosen among the 14 macro regional TIM

networks covering the whole country. They are structured in two tiers: a core mesh connecting

the Metro core nodes, and extensions connecting aggregation nodes with the locations of the

core mesh. The latter normally have a horseshoe topology but chains or weakly meshed

topologies are also possible. The topology structure with its terminology is exemplified in the

Figure below.

Figure 6-3: Structure of the reference Metro Regional Network

The boxes identified with “RF” (Remote Feeder), “F” (Feeder) and “T” (Metro Node) are packet

switched nodes, while the boxes identified with “R” are optical nodes (in red boxes the nodes

belonging to core part, in blue boxes the nodes belonging to the aggregation part, including the

head ends co-located with the core nodes).

The Metro core nodes hosting two “T” boxes (one or few in each macro region) play the role of

hub for packet switched traffic and are co-located with national backbone POP for long distance

traffic exchange.

Each horseshoe collects a subset of aggregation nodes and connects them to a couple of core

nodes which play the role of head-ends of the horseshoe. Aggregation nodes are organized in

small arcs of at most 8 nodes each including two metro core nodes. Two different types of optical

nodes are used for the metro core part and for the aggregation arcs: colorless directionless (CD)

ROADMs with 1:9 WSS and 80 channels (currently used at 100G with coherent transmission on

uncompensated systems) are used for the metro core (red boxes in Figure) while low cost

colorless ROADMs with 1:9, 1:4 or 1:2 WSS (depending on degrees required on the specific

nodes) and 40 channels (currently used at 10G or 100G with direct detection or coherent

 D4.2 GA Number 101016663

104

transmission on chromatic dispersion compensated systems) are used for the aggregation (blue

boxes).

Taking this network scenario into account, three simplified networks, representing real TIM

DWDM network of different sizes, have been adopted for the purpose of testing ONOS

scalability.

The first is a small size poorly meshed core network of only 16 nodes of which 15 are hubbed to

a single Metro hub node. This network allows preliminary tests on a network of small size before

testing the controller on larger network structures.

The second network includes both the core, made of only two hub nodes, and the aggregation

in a single medium size meshed network (48 nodes, of which 2 are Core nodes and 46 are

Aggregation nodes). This network allows to make a test of a medium size poorly meshed

network with paths composed of many hops and with a potential wavelength congestion

between and near the two hubs.

The third network is the biggest core network among the TIM metro regional DWDM

infrastructures with 107 nodes and 5 hub nodes and it constitutes the most challenging scenario

among the Italian core networks for a network SDN controller. For example, here the ROADM

with the higher (9) nodal degree employed in Italy can be found.

Concerning the list of connections, a basic set of connections to be loaded as a background

carried traffic is created for the three networks. The basic set include a connection (a 100G

circuit/lightpath) between each Metro Core node (not Hub) and its reference Metro Core Hub

Node. This gives origin to 15 circuits for the first network (15 Metro Core nodes and 1 Metro

Core Hub node), 46 circuits for second network (46 Metro Core nodes and 2 Metro Core Hub

nodes) and 102 circuits for third network (102 Metro Core nodes and 5 Metro Core Hub nodes).

For the second network, two more connections are added between the two hubs, making 48

the total number of connections, while for the third network a connection between each pair of

Metro Core Hubs is added (5 hubs implies 5*4/2=10 pair relationships) making 112 the total

number of connections.

Even if this is not the actual traffic carried by the regional DWDM networks, the set of the

defined connections reproduces a realistic pattern of the demand, which is made mainly by

connections between packet equipment of Optical Packet Metro (OPM) network, and in

particular 100G connections between Feeder nodes and Metro nodes (F and T nodes,

respectively, in Figure).

Table 2 summarizes the main parameters of the selected networks.

Table 2: Main parameters of the selected networks

Network
Total
Nodes

Metro Core
Hub nodes

Aggregation
nodes

Total
Links

Core
links

Extension
links

ONOS
devices

ONOS
links

ONOS
intents

Small 16 1 15 19 19 0 46 49 30

Medium 48 2 46 63 2 61 144 159 96
Large 107 5 102 163 163 0 331 383 224

Each network and its starting configuration of connections are described by three files:

1. a file with the list of nodes including both ROADMs and Transponders. Due to an ONOS

limitation that will be described in the next subsection, one transponder node must be

 D4.2 GA Number 101016663

105

created for each circuit termination: therefore, two transponders, one on each

termination node (ROADM) of the circuit, must be created. Transponder nodes are

directly linked to the co-located ROADM.

2. a file including the list of links between nodes describing the network topology. It

includes the geographical links interconnecting ROADM in different locations (i.e.

Central Offices) and the intra-CO link connecting the transponders with the co-located

ROADM.

3. a file including the list of connections to be activated in the network. It includes the

source and destination nodes (which must be transponder nodes).

The three files must be coherent with each other in terms of network elements (e.g. a link must

be terminated on two existing and already loaded nodes) and have to be loaded in the indicated

sequence from 1 to 3 (links require nodes to be terminated, and flows require nodes as

terminations as well, and also links for their routing and allocation). As already described, a

couple of tools have been developed to automate network emulation taking these files as input.

An extract form those files is the following:

Example of Node file
ID Node Latitude Longitude Node-type
………… file begins with the list of ROADM with their geographic coordinates ……………
1 ABBIATEGRASSO 45.397721 8.916455 Metro-Core
2 VIGEVANO-TICINO 45.318899 8.885664 Metro-Core
3 BERGAMO 45.69819 9.674881 Metro-Core
……… etc . then the list of transponder nodes with their coordinates follows … .
108 TS001-ABBIATEGRASSO 45.407721 8.926455 Transponder
109 TS002-VIGEVANO-TICIN 45.328899 8.895664 Transponder
110 TS003-BERGAMO 45.70819 9.684881 Transponder
……… etc up to the end of nodes …………..

Example of Link file
ID Node A ID Node Z Type
………… file begins with the list of links between ROADMs (for nodes ID codes are used) ……………
64 93 Core-link
90 93 Core-link
4 90 Core-link
90 33 Core-link
62 68 Core-link
……… etc … then a list of transponder links connecting ROADM with Transponders follows …………..
08 1 Transponder-link
109 2 Transponder-link
110 3 Transponder-link
………… etc. up to the end …………….

Example of connection file
Circuit-ID TP-name-S TP-name-D TP-ID-S TP-ID-D Circuit-
Type
1 TS001-ABBIATEGRASSO TD001-MILANO-BERSAGL 108 220 100G
2 TS002-VIGEVANO-TICIN TD002-MILANO-BERSAGL 109 221 100G
3 TS003-BERGAMO TD003-BERGAMO-CAMPAG 110 222 100G
………… etc up to the end …………….

6.5.3 ONOS enhancements

The ODTN driver, that provides OpenROADM support, was enhanced to find a solution in line

with the requirements contained in the OpenROADM device whitepaper to the problem of

assigning integer identifiers to device’s ports, as required by ONOS, while the OpenROADM

model assigns string identifier to them. By this proposal, integer port identifiers are taken from

 D4.2 GA Number 101016663

106

the <degree> and from the <shared-risk-group> branches of the model, respectively for line and

add/drop ports, according to OpenROADM terminology.

Another enhancement to the ODTN driver implemented for these tests is OpenROADM

transponders support. For the time being, the support is limited to ‘pure’ transponders and not

to muxponders or switchponders, even if the OpenROADM model comprises them. In ONOS,

the main issue with such kind of devices is the fact that it’s not possible to express relationship

between device’s client and line ports. A transponder client port is constrained to a precise line

port; similar condition applies to muxponders and switchponders where a group of client ports

is constrained to a specific line port. It’s currently not possible to instruct ONOS about such

constraints and, for this reason, ONOS may incur in errors during path calculation. To overcome

this limitation, the networks described in this document are modelled as being composed of

terminal devices composed of a single transponder, increasing the number of emulated devices

and loading ONOS device subsystem even more.

6.5.4 Test and measured KPIs

The main purpose of the tests was to assess ONOS ability of controlling a network composed of

a large number of devices and links, approximating, as close as possible, the conditions that an

SDN controller must afford in a real network. As it’s not possible to have too many devices in a

laboratory environment, the only possible solution was to use emulators. It must be said that

the use of emulators doesn’t produce the same results that are obtained using real devices,

mainly due to the absence of the physical layer. For instance, in a real network connection, setup

times are strongly influenced by physical layer parameters that need to be considered in order

not to impact on already existing connections. However, even using emulators is possible to

verify ONOS capability in terms of scalability of control plane features like number of

simultaneous NETCONF sessions (this is because it doesn’t teardown NETCONF session after

device’s configuration but keeps it running all time long), storing and management of topological

elements (devices, links), path calculation on large graph and so on. Moreover, a real network

environment would be affected also by the performances of the management network, surely

less performant than a laboratory network. On the other hand, it must be highlighted that, due

to the ONOS limitation on transponders’ client and line ports constraints previously described

that has been bypassed modelling terminal devices as being composed of a single transponder,

the number of devices managed by the controller is considerably higher than what would have

been without this limitation, imposing extra burden on the controller and moving the focus on

its performances even further.

The first analysed aspect was the loading of the networks (devices and links) into the controller.

The automation tool, after having started the docker containers emulating the network nodes,

creates two JSON files, describing respectively all the devices and all the links according to ONOS

native API, and POSTs them to the controller. When ONOS receives the devices configuration

file, it concurrently setups the NETCONF sessions with all of them and collects basic information

like number and type of ports. The automation tool waits for ONOS to advertise as many active

devices as are included in the JSON file and measures the time passed since the POST operation.

Table 3 shows the results obtained on the three networks: times reported are an average over

3 separate executions.

Table 3: ONOS network setup times

Network
 ONOS

devices
Network

setup time
Setup time
per device

Small 46 16 s 0.35 s

 D4.2 GA Number 101016663

107

Medium 144 44 s 0.31 s
Large 331 120 s 0.36 s

It can be seen that ONOS seems to scale quite well since the average time to load a single device

(about 350 ms) remains quite constant when the number of devices increases.

POSTing link configuration doesn’t have macroscopic effects and it’s not possible to observe different times as the

network complexity increases, since ONOS uses the information contained in the JSON file to update its internal

databases only, with no interaction with external elements.

Figure shows the ONOS GUI after the complete configuration of the three networks has been

loaded. Many devices are overlapping because they have the same (or very near) coordinates,

especially the devices in the hub nodes.

Small Network

Medium network

Large network

Figure 6-4: ONOS GUI representation of the three networks

The second aspect that has been analysed is the ability to set up a set of connections that

represent a realistic pattern of the TIM network traffic demand. As previously described,

connections are created between each leaf and the hub. Therefore, as many transponder

devices as there are leaf nodes are instantiated in the hub node. A few more transponders are

instantiated for inter-hub connections. In this case, the automation tool creates a JSON file for

each connection, POSTs the connection request to ONOS, waits for the intent to became either

“INSTALLED” or “FAILED” and continues with the next connections until the end. Table 4 shows

the results obtained on the three networks: times reported are an average over 3 separate

executions. It reports the average and the maximum intent “length” (in terms of number of

traversed devices). The “shortest” intent is not shown, being always 4 (source and destination

transponders and the two ROADMs at the source and destination locations). The number of links

is reported as a reference of networks dimensions.

 D4.2 GA Number 101016663

108

Table 4: ONOS connections setup times

Network
 ONOS

devices
 ONOS
intents

ONOS links Intents
setup time

Average #nodes
per intent

Maximum #nodes
per intent

Total time / # of
intents

Small 46 30 49 45 s 5.53 7 1.5 s
Medium 144 96 159 180 s 6.12 11 1.875 s
Large 331 224 383 407 s 5.84 10 1.825 s

It should be highlighted that, for each connection request, ONOS creates two intents: the first,

called OpticalConnectivityIntent, is created at the optical layer between the transponders’ line

ports: this intent configures the network media channel on the ROADMs along the path and the

optical channel on the transponders and requires the identification of an available transmission

wavelength. The second intent, called OpticalCircuitIntent, is the end-to-end circuit at the client

(packet) layer and configures only the two transponders. For this reason, the number of intents

in Table 4 is the double of the number of connection requests previously reported and intent

setup times include the time needed by both intent types.

Again, the results show that ONOS has a good scalability also on this aspect. Since the length of

the intents (in terms of number of devices) is, on average, quite the same for the three networks,

one might expect a difference in setup times between the networks to be due to network

dimensions having an impact on path calculation times. However, this is not the case because

the average intent setup time (last column of Table 4) shows a small difference only for the first

network, while between the second and the third, although the third is more than double the

second (both in terms of devices and links), the difference is negligible.

An additional test has been manually performed on all the networks to check if ONOS is able to

find an alternative path when the selected wavelength is not available on the shortest path. For

this purpose, two pairs of additional termination transponder nodes are created with their links

to ROADMs in a couple of leaf nodes. On the first pair of transponders, a connection between

the client ports requiring a specific wavelength (choosing a wavelength available on all the

network links) was created. On the second pair of transponders, a second connection between

the nodes was created requiring the same wavelength. The expected behaviour was that ONOS

had to be able to route the two connections over two different network paths, under the

assumption the ROADMs to which the two pairs of transponders are attached have Colorless,

Directionless and Contentionless (CDC) capabilities.

Table 5: Status of two disjoint connections (intents) instatiated over the large network.

{

 "intent id": "0x473",

 "app id": "org.onosproject.optical-

rest",

 "state": "INSTALLED",

 "src":

"netconf:163.162.95.81:31002/10",

 "dst":

"netconf:163.162.95.81:31003/10",

 "srcName": "XPSP2-BERGAMO-CAMPAG",

 "dstName": "XPDP2-BRESCIA-KENNED",

 "ochSignal": “+16x50.00GHz +/-

25.00GHz",

 "centralFreq": "193.9 THz",

 "pathName": "XPSP2-BERGAMO-CAMPAG ->

BERGAMO-CAMPAGNOLA -> BERGAMO ->

TRESCORE-B -> CHIARIX -> SAREZZO ->

BRESCIA -> BRESCIA-KENNEDY -> XPDP2-

BRESCIA-KENNED"

}

{

 "intent id": "0x46e",

 "app id": "org.onosproject.optical-

rest",

 "state": "INSTALLED",

 "src":

"netconf:163.162.95.81:31000/10",

 "dst":

"netconf:163.162.95.81:31001/10",

 "srcName": "XPSP3-BERGAMO-CAMPAG",

 "dstName": "XPDP3-BRESCIA-KENNED",

 "ochSignal": +16x50.00GHz +/-25.00GHz",

 "centralFreq": "193.9 THz",

 "pathName": "XPSP3-BERGAMO-CAMPAG ->

BERGAMO-CAMPAGNOLA -> BRESCIA-KENNEDY ->

XPDP3-BRESCIA-KENNED"

}

 D4.2 GA Number 101016663

109

Table 5 shows the two intents created by ONOS over the large network (but similar results were

obtained also on the other two): it’s possible to see that, as required, the same wavelength

(193.9 THz) was used for both but, apart from the source and destination ROADMs (the second

and the penultimate list items), two disjoint paths were employed.

 D4.2 GA Number 101016663

110

7 OLS CONTROLLER

The OLS controller used in B5G-OPEN for an Adtran OLS is based on the Adtran Ensemble

Network Controller software solution and is offering a northbound ONF Transport-API (TAPI)

towards the Optical Controller.

Figure 7-1 Adtran OLS Controller Northbound Interfaces

This section describes TAPI modeling of the reference topology abstraction model. The topology

model provides the explicit multilayer topology that the Layer 2 to Layer 0 represents. This

topology includes the OTS, OMS, OCH, ODU, and DSR layers.

Based on ONF TAPI 2.1 models, the Adtran TAPI Implementation supports a TAPI topology flat

abstraction model that collapses all layers into a single multilayer topology. A single topology

represents all network layers such as DSR, ODU, OCH, and Photonic Media, which include media

channels, OMS, OTS and so on. This topology is modeled as a tapi- topology:topology object

within the tapi-topology:topology-context/topology list. This release supports only a single

topology, therefore the tapi-topology:topology-context/tapi-topology:nw- topologyservice

object is not currently implemented.

SIPs represent the available service entry points. SIPs associate to all DSR, ODU and

PHOTONIC_MEDIA NEPs in the network support service configuration. A SIP logically maps to

one topology NEP through the tapi-topology:owned-node-edge-point/mapped-

serviceinterface-point attribute. The TAPI topology data model consists of nodes and links. A

node is a logical grouping of ports that provide a flexible view definition. For example, one view

might represent the topology one-to-one, whereas another view can represent an entire

network as a single logical node.

The current implementation delivers a single default context, with a single topology composed

of:

• tapi-topology:node

• tapi-topology:link

The interface represents each physical node as a multilayer tapi-topology:node object, which

creates a 1:1 logical-physical topology. The forwarding domain is the domain associated with

the entire physical network element. The TAPI interface does not report any information about

the internal structure of the network element. Each node displays: tapi-topology:node-edge-

 D4.2 GA Number 101016663

111

point. Each NEP represents an externally visible port that belongs to the node. The TAPI interface

does not report any information about the internal structure of the network element. Each NEP

represents:

• A client port

• An OTS port

• An OMS port

• An OCH trail termination point

• An ODUk trail termination point

The Adtran ENC TAPI implementation supports both fully aggregated topological scenario,

where Adtran provides both optical line systems (OSLs) and optical transponders, as well as a

partially disaggregated scenario, where Adtran provides only the OLS. In B5G-OPEN, only the

partially disaggregated scenario will be used and integrated in the overall control architecture.

A full documentation of the Adran ENC TAPI is available in the ENC TAPI integration manual. In

this deliverable, we focus on features used and extended in B5G-OPEN and integrated in the

overall control architecture.

The ENC TAPI works over the REST framework offering the CRUD operations to perform over the

network. This helps to create, read, update and delete services on the network. Further details

on the operations are seen below.

Service Creation Request

HTTP Request POST

URL https://<IP>:<PORT>/restconf/data/tapi-common:context/tapi-
connectivity:connectivity-context

Description Service Creation request between client ports of transponders A and B. Since

the service is created between client ports of the transponders, service type

“DSR” is used in the request and respective higher layer optical channels are

created by the OLS domain controller during service provisioning. With

source and destination SIPs, the TFS checks for links existing between them.

If yes, the endpoint details are sent to ENC domain controller, which

completes the path computation between the two client ports, and

provisions the mentioned service.

Headers {“Content-Type”: “application/yang-data+json”, “Accept”:

“application/json”}

Authentication Bearer Token

Body {

 "tapi-connectivity:connectivity-service": [

 {

 "end-point": [

 {

 "layer-protocol-name": "DSR",

 D4.2 GA Number 101016663

112

 "layer-protocol-qualifier": "tapi-
dsr:DIGITAL_SIGNAL_TYPE_100_GigE",

 "service-interface-point": {

 "service-interface-point-uuid":
"<TRANSPONDER_A_CLIENT_PORT_UUID>"

 },

 "tapi-adva:adva-connectivity-service-end-point-spec": {

 "adva-network-port-parameters": {

 "channel": {

 "central-frequency": <CHANNEL_FREQ>

 },

 "termination-level": "OPU"

 }

 }

 },

 {

 "layer-protocol-name": "DSR",

 "layer-protocol-qualifier": "tapi-
dsr:DIGITAL_SIGNAL_TYPE_100_GigE",

 "service-interface-point": {

 "service-interface-point-uuid":
"<TRANSPONDER_B_CLIENT_PORT_UUID>"

 },

 "tapi-adva:adva-connectivity-service-end-point-spec": {

 "adva-network-port-parameters": {

 "channel": {

 "central-frequency": <CHANNEL_FREQ>

 },

 "termination-level": "OPU"

 }

 }

 }

],

 "service-layer": "DSR",

 "service-type": "POINT_TO_POINT_CONNECTIVITY",

 "name": [

 {

 "value": <SERVICE_NAME>,

 "value-name": "USER"

 }

],

 D4.2 GA Number 101016663

113

 "include-link": ["<LINK_UUID_BTW_TRANSPONDERS>"]

 }

]

}

Response

codes

201 Created / 404 Not Found / 422 Invalid Request

Service Creation Request

HTTP Request GET

URL https://<IP>:<PORT>/restconf/data/tapi-common:context/tapi-

connectivity:connectivity-context/connectivity-service

Description Read Service details in the network.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {}

Response

codes

200 OK / 404 Not Found / 422 Invalid Request

Service Deletion Request

HTTP Request DELETE

URL https://<IP>:<PORT>/restconf/data/tapi-common:context/tapi-

connectivity:connectivity-context/tapi-
connectivity:connectivity-service=<SERVICE_UUID>/

Description Delete Service in the network. This tears down all the optical layers of

channels created between the source and destination.

Headers {“Content-Type”: “application/json”, “Accept”: “application/json”}

Authentication Bearer Token

Body {}

Response

codes

204 No Content / 404 Not Found / 422 Invalid Request

The deployment has the space for evaluation of KPI parameters including,

 D4.2 GA Number 101016663

114

KPI Definition Methodology

Service

Creation Time

Time consumed to create an end to

end optical service between client

ports of two optical terminals

Timestamp between creation request

initiation and success response.

Control traffic

size

Used to characterize the control

traffic flowing in the network. This

gives the size of requests for service

creation/read/update and deletion

Capturing the packets used to take the

necessary action between (mgnt. And

control plane) and between (control

and data plane).

Provisioning service across the domains:

In optical transport network, two types of services are created.

Client Facing Connectivity (CFC) - Optical service created between two client ports. For example,

optical service with service layer “DSR” created between client ports of transponders

provisioning an end to end service.

Network Facing Connectivity (NFC) - Optical service created between two network ports. For

example, optical service with service layer “PHOTONIC MEDIA” created between network ports

of ADD DROP multiplexers or between two OLS entities.

In a partially disaggregated network, the optical terminal like transponder and OLS domains are

deployed from different vendors. Creating service across the domain is contentious as the

domain controller offers only-CFC or only-NFC service creation. This means that service is

created either between two network ports or two client ports, and it is not feasible to create a

service between a client port of one device to network port of another device. This is still

debatable as it has advantage of opening up the network but has huge complexity in combining

standards and protocols of different optical layers.

A first validation of the OLS control architecture has been performed with a digital twin of a

simple optical network using TeraFlowSDN as parent SDN controller. The next steps of software

integration is to integrate the Adtran OLS domain controller with the Optical Network controller.

 D4.2 GA Number 101016663

115

8 PON CONTROLLER

8.1 INTRODUCTION
The B5G-OPEN TDM-PON infrastructure is realised using an XGS-PON OLT pluggable transceiver

(TiBit pluggable) and two ONUs. The OLT is interfaced directly to a whitebox switch while the

OLT is interconnected to the ONUs by means of a splitter, forming up an ODN branch. Τhe PON

vendor (Tibit) is providing the pluggable software and the PON controller software. The

integration of Tibit PON Controller with the B5G OPEN platform is realised with the development

of an Access Controller as illustrated in the below figure. The Access Controller is responsible

for: a) monitor the PON network and receive any requests for PON reconfiguration; b) translate

these requests into high level traffic requests that will be reported to the B5G-ONP App; c)

execute the appropriate actions in the PON Controller in order to support the new requests.

In addition, the Access Controller will communicate with the LiFi Controller for retrieving any

connection/traffic requests.

Figure 8-1 B5G-OPEN PON Controller and Access Controller

8.2 INTERNAL ARCHITECTURE
The Access Controller is developed as part of the B5G-OPEN software platform, and provides

the below functionalities:

• On the South Bound Interface (SBI): the Access Controller communicates with the PON

Controller using REST/JSON. The SBI that communicates with the PON Controller is a

software client that is developed based on provided vendor specific data modelling

(YAML file).

• On the South Bound Interface (SBI): the Access Controller communicates with the LiFi

Controller using REST/JSON for receiving any connectivity/traffic requests generated in

the LiFi network.

• The Access Controller implements a set of: a) PON abstraction functions which are

responsible to extract the PON parameters and their values; b) LiFi abstraction functions

for extracting LiFi traffic parameters. In addition, the PON and LiFi abstraction functions

 D4.2 GA Number 101016663

116

will expose to the higher layers only the valuable for the B5G-OPEN software platform

set of parameters.

• On the Northbound Interface (NBI), the Access Controller communicates with the B5G-

ONP app. The NBI implements a REST/JSON server which will support the exchange of

traffic related information adopting a data structure defined in B5G-OPEN project.

8.3 INTERFACE SPECIFICATION
This section lists the Interfaces that have been implemented (as part of WP4 activities) or their

implementation are ongoing as part of WP5 activities.

8.3.1 South Bound Interface (SBI) towards the PON Controller (Tibit)

The Access Controller communicates with the PON Controller (Tibit) using REST/JSON based on

the vendor specific data modelling (YAML file). The integration is completed.

8.3.2 North Bound Interface (NBI) towards the LiFi Controller

The Access Controller communicates with the LiFi Controller using REST/JSON. The actual

integration will be completed and reported in WP5.

8.3.3 South Bound Interface (SBI) towards the B5G-ONP app

The Access Controller communicates with the B5G-ONP app component. The actual integration

will be completed and reported in WP5.

8.4 COMPONENT INTEGRATION
The Access Controller integrates with the following elements:

• The vendor specific (Tibit) PON Controller using the SBI. Communication is realized using

REST/JSON.

• The LiFi Controller using the SBI. Communication will be realized using REST/JSON.

• The B5G-ONP app using the NBI. Communication will be realized using REST/JSON.

8.5 FUNCTIONAL VALIDATIONS
The following tests is a non-exhaustive list of tests that are be used to validate the component:

8.5.1 Communication with PON Controller and Retrieving Network information

Description: The steps that we followed are listed below:

1. The PON network is deployed including the XGS-PON OLT pluggable transceiver and a

couple of ONUs.

2. The PON Controller is started.

3. The Access Controller is launched, and the following items are tested:

a. The Access Controller communicates successfully with the PON Controller

b. The Access Controller retrieves the PON configuration information. In detail:

o Controller configuration

o OLT Configuration

o ONUs Configuration

 D4.2 GA Number 101016663

117

o SLAs Configuration

o Bandwidth Profile Configurations

Result: The test was successful. The results regarding the PON Controller are illustrated in the

next figures, while the results regarding the Access Controller are reported in detail in section

2.9 (as REST result examples).

Figure 8-2 PON Controller Dashboard – General dashboard

Figure 8-3 PON Controller Dashboard – OLT Summary

 D4.2 GA Number 101016663

118

Figure 8-4 PON Controller Dashboard – ONU Summary

Figure 8-5 PON Controller Dashboard – SLA/Bandwidth profile configuration

 D4.2 GA Number 101016663

119

8.5.2 Communication with LiFi Controller and B5G-ONP APP

Description: The steps that we will follow are the ones below:

1. Deploy the PON network and launch both the PON Controller and LiFi Controller.

2. Launch the Access Controller.

3. LiFi Controller will generate a new traffic request and send to Access Controller.

4. Test that:

a. the Access Controller receives successfully the request and parse all its data;

b. translate the new request into a high-level traffic request;

c. deliver the high-level traffic request to the B5G-ONP app using the NBI;

d. execute the appropriate reconfiguration actions in the PON Controller;

e. observe that the new PON configuration is realised in the testbed.

Result: Test is ongoing since the integration between Access Controller and LiFi Controller,

Access Controller and B5G-ONP app are ongoing. These integration tests will be completed in

WP5 and reported in WP5 deliverables.

8.6 ROADMAP
At the time of writing, the basic functionality of PON Controller and Access Controller are

completed. In the remaining of WP4 and WP5, the ongoing activities are:

- Complete the integration between PON Controller and Access Controller.

- Complete the integration between LiFi Controller and Access Controller

- Complete the integration between Access Controller and B5G-ONP app

8.7 COMPONENT KPIS
This section details the KPIs that have been defined for the component and the results.

KPI Definition Methodology Results

PON
Reconfiguration
Latency

This is the time it takes
for the actual recon-
figuration of the PON
network.

Measured as time dif-
ference between the
request timestamp and
response timestamp.
Target (< 20s).

The results are reported in
the below subsection.

Access
Controller
Latencies

This is the time it takes
to Access Controller to
execute different
functionalities
including: a) to receive
a new request and
parse all its data; b) to
translate the new
request into a high level
traffic request; c) to
deliver the high level
traffic request to the

Measured from the
timestamps between
request and response or
timestamps between
starting and completing
a specific task.

Evaluation ongoing. Results
to be reported when the
integration between
components will be
completed (in WP5).

 D4.2 GA Number 101016663

120

B5G-ONP app; d) to
execute the
appropriate actions in
the PON Controller.

 D4.2 GA Number 101016663

121

9 LIFI CONTROLLER

9.1 SUMMARY
The LiFi controller serves as the central component responsible for managing LiFi Aps in the

network. It is strategically positioned between the PON controller and the LiFi AP. This specific

positioning ensures seamless communication and enhanced coordination between the optical

network layer and the wireless LiFi communication layer. Leveraging ONOS, the controller

ensures a seamless integration with existing network systems, offering a scalable and modular

design. Through various REST API endpoints, the LiFi controller interfaces with client

applications, allowing them to configure and monitor the state of LiFi devices in the network.

9.2 DESCRIPTION AND INTERNAL ARCHITECTURE
ONOS provides a robust platform that supports basic functionalities required for a LiFi controller.

Key features that make ONOS a suitable candidate include:

• Extensive Northbound and Southbound Interface Support: ONOS has in-built capabilities to

communicate with a wide range of networking devices and applications.

• Support for NETCONF: ONOS provides inherent support for NETCONF, an essential

requirement for our LiFi controller design.

As for the core part of ONOS, there’s no need to modify it for our design. ONOS’s core provides

the foundational functionalities, and the customisations (like the LiFi device driver) simply build

on top of these. To this end, the ONOS was chosen for the LiFi controller design. Besides the

Northbound and Southbound Interfaces, the LiFi device driver is a critical component that

facilitates communication between the LiFI controller and the LiFi Aps. The device driver

contains ONOS supported NETCONF commands, which simplifies the design of translating REST

API calls into NETCONF commands.

9.3 INTERFACE SPECIFICATIONS
The innovative LiFi controller’s NBI was discussed in detail in section 4.10.1. It’s based on a

RESTful API design and offers endpoints for device management, IP configuration, wireless

configuration, and network configurations.

For the SBI, NETCONF is the protocol of choice. ONOS has built-in support for NETCONF, which

facilitates the controller-device communication. Some of the supported NETCONF commands in

ONOS are:

• get: Retrieve information/configuration from the device.

• editConfig: Modify a device’s configuration.

• copyConfig: Copy a particular configuration to a target source.

• deleteConfig: Remove a specific configuration.

By leveraging ONOS’s NETCONF command set, the LiFi controller can effectively manage and

configure LiFi devices in the network. Here’s part of the driver code for configuring LiFi AP after

receiving calls from user:

 D4.2 GA Number 101016663

122

9.4 FUNCTIONAL TEST AND VALIDATION
Testing is crucial to ensure the robustness of the LiFi controller. Various functional tests must be

conducted:

• REST API Endpoints Test: The purpose of the REST API Endpoints Test is to ensure that the

system behaves as expected when it receives both valid and invalid inputs. This involves

verifying the return values and ensuring that the system can handle erroneous scenarios

gracefully.

• NETCONF Communication: The NETCONF Communication Test aims to ensure that REST API

calls are correctly translated to NETCONF commands and that the system’s internal

translation mechanism functions as expected.

 private NetconfSession getSession(DeviceId deviceId) throws NetconfException {

 NetconfDevice device = controller.getDevicesMap().get(deviceId);

 if (device == null) {

 throw new NetconfException("Device not found for DeviceId: " + deviceId);

 }

 return device.getSession();

 }

 public String getDeviceName(DeviceId deviceId) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 return session.get("/plf-lifi:lifi/interface/name");

}

 public void setDeviceName(DeviceId deviceId, String name) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 session.editConfig("<name>" + name + "</name>");

}

 public String getDeviceStatus(DeviceId deviceId) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 return session.get("/plf-lifi:lifi/interface/status");

 }

 public String getIpAddress(DeviceId deviceId) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 return session.get("/plf-lifi:lifi/interface/ip-addr");

 }

 public void setIpAddress(DeviceId deviceId, String ip) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 session.editConfig("<ip-addr>" + ip + "</ip-addr>");

 }

 public String getSsid(DeviceId deviceId) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 return session.get("/plf-lifi:lifi/interface/access-point/ssid");

 }

 public void setSsid(DeviceId deviceId, String ssid) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 session.editConfig("<ssid>" + ssid + "</ssid>");

 }

 public void setPassword(DeviceId deviceId, String password) throws NetconfException {

 NetconfSession session = getSession(deviceId);

 session.editConfig("<password>" + password + "</password>");

 }

 D4.2 GA Number 101016663

123

9.5 COMPONENT INTEGRATION AND ROADMAP

The LiFi prototype built in WP3 is under procurement and will be ready in Q1 2024. Then the

remaining tests are:

- Full tests on LiFi controller and LiFi AP using the multiple sets of LiFi prototypes.

- Complete the integration between PON Controller.

9.6 COMPONENT KPIS
The following KPI provide insights into the efficiency and effectiveness of the LiFi controller:

KPI Definition Methodology Results

LiFi Controller
Latencies

This is the time it takes
for the LiFi Controller to
execute different
requests including: 1)
retrieving information
by GET request; 2)
update or assign
settings by PUT
request.

Measured from the
timestamps between
request and response or
timestamps between
starting and completing
a specific task.

Evaluation ongoing. Results
to be reported when the
integration with all LiFi
prototypes completed.

 D4.2 GA Number 101016663

124

10 LIFI AGENT

10.1 SUMMARY
The LiFi Agent acts as a central hub in the architecture of the LiFi AP. With the advancement of

NETCONF capabilities, the agent provides a seamless way for the AP to interact with other

components, offering a structured interface for configurations and management. The agent is

designed around the NETCONF server’s principles, leveraging the embedded Linux environment

and utilizing the ‘sysrepo’, ‘netopeer2-server’, and associated tools for its functioning.

10.2 DESCRIPTION AND INTERNAL ARCHITECTURE
The LiFi Agent is developed as a NETCONF server on the Linux based LiFi AP. The integration

revolves around using ‘sysrepo’ as the YANG data store and the ‘netopeer2-server’ as the

NETCONF server component. These two main components ensure that the LiFi AP can be

managed using NETCONF commands, making it interoperable with standard network

management tools. Key internal components and their functions are described below:

• sysrepo: Acts as the YANG-based data store. It keeps track of configuration and state data

in a structured manner according to the ‘plf-lifi.yang’ model.

• netopeer2-server: Provides the NETCONF server functionalities. It listens for incoming

NETCONF commands, processes them, and either retrieves data from or makes changes to

sysrepo accordingly.

• sysrepo-plugin: This is a custom-built component that listens to changes made to sysrepo.

Whenever a NETCONF command leads to a configuration change, the plugin acts on the LiFi

AP to enact that change.

• Telemetry Data Source and Prometheus Exporter: This component is responsible for

gathering real-time data metrics from the LiFi AP and making them available to be exported

to external Prometheus server. This functionality, including data types and their

specifications, is presented in section 4.14.2.

10.3 INTERFACE SPECIFICATION
Given the NETCONF nature of the LiFi Agent, the primary interface specification is based on the

‘plf-lifi.yang’ model. This YANG model defines structured data entities and the relationships

between them, thereby providing a clear interface for the management of the LiFi AP. Details of

this interface is presented in section 4.10.2.

10.4 FUNCTIONAL TEST AND VALIDATION
To ensure the LiFi Agent operates seamlessly and delivers consistent performance, we’ve

devised a comprehensive test and validation strategy. This strategy focuses on the NETCONF

operations and the accuracy and responsiveness of the telemetry exporter.

1) NETCONF Operation testing:

• Read Operation: Retrieve specific configuration or state data from the AP and validate its

accuracy.

• Update Operation: Modify existing configurations on the AP, then validate if changes have

been properly applied.

 D4.2 GA Number 101016663

125

2) Telemetry Exporter Testing:

Monitor the telemetry data being exported from the AP during normal operations, capturing

metrics related signal strength, link speed etc. Introduce blockage to the LiFi link and

monitor telemetry data changes. Upon removal of the blockage, observe the telemetry data

to ensure it returns to its baseline state.

10.5 COMPONENT INTEGRATION AND ROADMAP
The LiFi prototype built in WP3 is under procurement and will be ready in Q1 2024. Then the
remaining tests are:

- Full tests on LiFi controller and LiFi AP using the multiple sets of LiFi prototypes.

- Complete the integration between PON Controller and Access Controller Roadmap:

10.6 COMPONENT KPIS
The following KPIs provide insights into the efficiency and effectiveness of the LiFi Agent:

KPI Definition Methodology Results

LiFi Agent
Provisioning
Time

This is the time it takes
for the LiFi Agent to be
configured with default
configuration.

While LiFi AP is powered
up, measured from the
timestamps between
start and end of the LiFi
AP get default
configuration. More
detail is given below.

See below.

Netconf
request latency

This is the time it takes
to complete different
Netconf request sent
by the LiFi controller.

Refer to ‘LiFi controller
latency’ in section 11.6.

Evaluation ongoing. Results
to be reported when the
integration with all LiFi
prototypes has completed.

LiFi Agent Provisioning Time

Initial test has been done, and the full test will be repeated when all LiFi prototypes are ready in

Q1 2024. In the test, the LiFi AP is firstly powered up and running normally. The following

payload is then sent to the LiFi agent as default configuration. Timestamps are recorded

between the start and end of the configuration. This is then repeated for 50 times and an

average time is acquired.

vlan = random.randint(1, 4096)

 payload = """

 <config xmlns:xc="urn:ietf:params:xml:ns:netconf:base:1.0" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">

 <lifi xmlns="http://.purelifi.com/yang">

 <interface>

 <name>wlan0</name>

 <status>up</status>

 <access-point>

 <enabled>true</enabled>

 <mode>ap</mode>

 <ssid>LIFI""" +str(vlan)+"""</ssid>

 <security>

 <password>TESTTEST</password>

 <encryption>WPA2</encryption>

 </security>

 <vlan-id>"""+str(vlan)+"""</vlan-id>

 </access-point>

 </interface>

 </lifi>

 </config>

 """

 D4.2 GA Number 101016663

126

The preliminary result is as follows (in ms) and the CDF of the provisioning time is shown in

Figure 10.1.

Figure 10.1: Preliminary result of LiFi Agent Provisioning Time

50 Execution Times:

[764.119, 703.4970000000001, 873.011, 902.717, 866.484, 878.086, 893.827, 892.3259999999999,

894.537, 909.798, 893.312, 867.713, 689.763, 878.305, 763.288, 677.218, 787.376,

899.4799999999999, 904.841, 882.895, 888.243, 888.211, 887.379, 876.3109999999999, 885.113,

891.397, 655.474, 860.472, 889.007, 867.418, 863.126, 739.1809999999999, 822.062, 899.787,

935.163, 912.1949999999999, 864.754, 921.479, 882.345, 889.575, 877.592, 861.662,

870.1750000000001, 878.7439999999999, 919.9359999999999, 933.496, 667.4060000000001,

750.038, 724.9060000000001, 955.3770000000001]

Average Time:

851.6123400000002

 D4.2 GA Number 101016663

127

11 OPENROADM AGENT

The OpenROADM agent is an implementation of a NETCONF server controlling optical network

elements using OpenROADM device models. It’s basically an evolution of the agent developed

for the H2020 Metro-Haul project that was limited to ROADM devices. In B5G-Open the agent

has been enhanced to cover MultiBand technology exploiting the latest OpenROADM models.

11.1 DESCRIPTION AND INTERNAL ARCHITECTURE
The OpenROADM agent exploits the transAPI framework available for Netopeer, an open source

implementation of the NETCONF protocol. The transAPI allows invoking call-back functions

whenever an edit-config rpc operation performs changes on a specific branch of the

configuration. Starting from this feature, the agent implements call-back functions that manage

the controller requests for the creation of the interfaces that, according to the OpenROADM

device model, are required for connection and optical channel setup.

To decouple the OpenROADM model processing from the action required by the underlying

hardware, the agent architecture leverages on the Linux dynamic libraries subsystem to load

specific drivers at runtime. The drivers are associated to circuit-packs, an OpenROADM entity

used to model atomic elements inside a device that, according to the model, must have a type

attribute. For the agent, every circuit-pack-type can have its specific driver that is loaded

by the main module when an edit-config rpc creates the first circuit-pack of that type. The

following figure shows the agent architecture applied to a ROADM architecture.

Figure 11.1: OpenROADM agent architecture

11.2 INTERFACE SPECIFICATION
The OpenROADM agent has two different interfaces: a NorthBound interface towards an SDN

controller and some SouthBound interfaces towards the data plane devices.

 D4.2 GA Number 101016663

128

The NBI is a NETCONF/YANG interface implementing the OpenROADM device models. For the

B5G-OPEN project, the agent will upgrade from the 2.2 to the 12.1 device model in order to

incorporate all the latest enhancements dedicated to the pluggables and to the multiband

technology.

The YANG models that are involved (directly or because imported by other models) are:

org-openroadm-device.yang

org-openroadm-network-media-channel-interfaces.yang

org-openroadm-media-channel-interfaces.yang

org-openroadm-prot-otn-linear-aps.yang

org-openroadm-port-capability.yang

org-openroadm-rstp.yang

org-openroadm-pluggable-optics-holder-capability.yang

org-openroadm-otn-odu-interfaces.yang

org-openroadm-otn-otu-interfaces.yang

org-openroadm-optical-transport-interfaces.yang

org-openroadm-optical-channel-interfaces.yang

org-openroadm-lldp.yang

org-openroadm-ethernet-interfaces.yang

The SBI is a proprietary interface based on function calls. A driver module implements functions

to perform actions on the circuit-packs composing the device. For example, a ROADM degree

can be composed of WSSes and amplifiers modelled as programmable circuit-packs and a

dedicated driver can be written for configuring them. The functions that a driver can implement

are the:

• init: called during agent start-up to set up the internal communication session between

the agent and the circuit-pack and to perform initial circuit-pack setup.

• close: called at agent closing to free all the allocated resources.

• get_inventory: called when the agent needs circuit-pack inventory information.

• get_port_operational_state: called to get the operational state of a port.

• get_port_media_channel_capability: called by the agent to retrieve the optical

capabilities of a device’s port, in terms of supported minimum and maximum

wavelength and channel spacing.

• make_connection: cross-connection (spectral window) creation between circuit-pack

ports.

• delete_connection: cross-connection removal.

To cope with circuit packs that are not programmable (such as mux-demux), all functions are

optional, but the followings constraints apply:

• If init function is defined the close function must be present.

• If make_connection is defined the init function must be present.

• If make_connection is defined the delete_connection function must be present.

Other functions could be added in future releases of the agent.

 D4.2 GA Number 101016663

129

It’s worth specifying that the agent software architecture is flexible enough to manage devices

composed of circuit-packs from different vendors and allows easy implementations of

emulators, since it is possible to create “dummy” drivers that perform no actions. As already did

in the Metro-Haul project, this feature could be exploited to control hardware prototypes from

other partners.

Discussions are ongoing with TU/e to adopt the agent for the device under development.

11.3 FUNCTIONAL TESTS AND VALIDATIONS
The tests that can be done to validate the OpenROADM agent are the following:

• Startup of the netopeer-server daemon and loading of the transAPI module

implementing the agent, of the OpenROADM device models and of the initial

configuration data. After loading the configuration data, the agent must load all the

configured device drivers (Loadable Linux libraries) and identify the implemented API

functions.

• Using a NETCONF client (e.g. netopeer-cli), retrieval of configuration and state data,

focusing on the optical parameters, in terms of supported spectral windows (media

channel capabilities).

• Edit-config operation to create cross-connections on the different bands of a multi-band

ROADM

11.4 COMPONENT INTEGRATION AND ROADMAP
The OpenROADM agent will be integrated with the ONOS SDN Controller for the control of

multiband ROADMs and of ZR/ZR+ pluggables.

Roadmap:

Q4/2023 – Integration and validation of Multiband extensions with the ONOS SDN controller.

11.5 COMPONENT KPIS
The kind of KPI that can be applied to the agent are related to delays and latencies. The agent

architecture allows it to be employed with different data-plane hardware to implement basic

OpenROADM based ROADMs and transponders. This makes it difficult to define a set of

measurements that can characterize all kind of devices that can be implemented. Moreover,

most of the time required to perform different actions is spent by the specific data plane

hardware and it results to be several order of magnitude slower than the time taken by the

agent for NETCONF messages processing (tenth of seconds wrt tenth of milliseconds). Therefore,

it’s clear that it would be more meaningful to characterize a device employing the agent.

That said and keeping in mind that delays involving a software module are negligible wrt delays

of optical resources, it can be meaningful to characterize the agent as a standalone component

(i.e. without underlying data-plane hardware) from a scalability point of view, i.e. analysing how

internal resources dimensions impact on the operations of the component. The following KPIs

are defined:

• Changes of time needed to load the start-up datastore (at agent initialization) wrt the

number of modelled degrees, i.e. wrt to datastore dimensions. For example, how start-

 D4.2 GA Number 101016663

130

up times changes increasing the degrees number (e.g. 4, 6, 9 to cover the most typical

ROADMs sizes).

• Time required by the ONOS SDN controller to discover the device (port capabilities) wrt

the number of degrees.

• Time required to create roadm-connections as a function of the number of degrees (4,

6, 9), i.e. of the datastore dimensions. According to the OpenROADM MSA, setup of new

roadm-connections requires the creation of a relationship between two Network Media

Channel (NMC) interfaces that, in turn, reference related Media Channel (MC)

interfaces. Therefore, the worst-case scenario is when a large number of MC and NMC

interfaces (e.g. full set of 100 GHz frequency slots in the C-Band, 191.3 to 196.1 GHz)

has been created on all available degrees.

KPI Definition Methodology Results

Start-up delay Characterize aspects related to
instantiation of the agent.

Accessing the agent log, measure
the time required to setup the
device. Repeat for different
datastore sizes (4 and 9 degrees).

See below

Discovery
Latency

Time required by ONOS SDN
controller to discover the ROADM
and its port capabilities.

Accessing the agent log, measure
the time required by ONOS to
discover device ports. Repeat for
different datastore sizes (4 and 9
degrees).

See below

Connection
Latency

Time required to create a cross-
connection between two roadm
degrees. This require a
configuration change that is
reflected in the datastore.

Accessing the agent log, measure
the time for setting a roadm-
connection

See below

11.5.1 Agent start-up delay

Datastore dimensions

4-degrees 6-degrees 9-degrees

437 ms 460 ms 477 ms

Average times over 3 executions.

As an example, here the agent log for a 9 degree datastore (only significative messages):

2023-06-07T10:19:14.089473773Z netopeer-server[1]: Shared memory location: /dev/shm/libnetconfshm
2023-06-07T10:19:14.089575033Z netopeer-server[1]: POSIX SHM File Descriptor: 3 (600B).
2023-06-07T10:19:14.091921831Z netopeer-server[1]: ncds_features_parse: no feature definitions found
in data model ietf-inet-types.
(...)
2023-06-07T10:19:14.434878328Z netopeer-server[1]: Datastore org-openroadm-device initiated with ID
1714636916.
2023-06-07T10:19:14.484574047Z netopeer-server[1]: *************************************
2023-06-07T10:19:14.484612868Z netopeer-server[1]: *** Initializing OpenROADM device ***
2023-06-07T10:19:14.484628413Z netopeer-server[1]: *************************************
2023-06-07T10:19:14.504511993Z netopeer-server[1]: Transapi calling callback /A:org-openroadm-
device/A:info with op MOD.
2023-06-07T10:19:14.504558090Z netopeer-server[1]: *** ROADM Device ***
2023-06-07T10:19:14.504829072Z netopeer-server[1]: Initializing circuit-pack DEG1-AMP (dummy-amp)
2023-06-07T10:19:14.505215933Z netopeer-server[1]: Initializing circuit-pack DEG1-WSS (dummy-wss)
2023-06-07T10:19:14.505253587Z netopeer-server[1]: Initializing circuit-pack DEG2-AMP (dummy-amp)
2023-06-07T10:19:14.505411899Z netopeer-server[1]: Initializing circuit-pack DEG2-WSS (dummy-wss)
2023-06-07T10:19:14.505462868Z netopeer-server[1]: Initializing circuit-pack DEG3-AMP (dummy-amp)

 D4.2 GA Number 101016663

131

2023-06-07T10:19:14.505494554Z netopeer-server[1]: Initializing circuit-pack DEG3-WSS (dummy-wss)
2023-06-07T10:19:14.505524873Z netopeer-server[1]: Initializing circuit-pack DEG4-AMP (dummy-amp)
2023-06-07T10:19:14.505772436Z netopeer-server[1]: Initializing circuit-pack DEG4-WSS (dummy-wss)
2023-06-07T10:19:14.505825798Z netopeer-server[1]: Initializing circuit-pack DEG5-AMP (dummy-amp)
2023-06-07T10:19:14.505854604Z netopeer-server[1]: Initializing circuit-pack DEG5-WSS (dummy-wss)
2023-06-07T10:19:14.505927889Z netopeer-server[1]: Initializing circuit-pack DEG6-AMP (dummy-amp)
2023-06-07T10:19:14.506025481Z netopeer-server[1]: Initializing circuit-pack DEG6-WSS (dummy-wss)
2023-06-07T10:19:14.506109435Z netopeer-server[1]: Initializing circuit-pack DEG7-AMP (dummy-amp)
2023-06-07T10:19:14.506231042Z netopeer-server[1]: Initializing circuit-pack DEG7-WSS (dummy-wss)
2023-06-07T10:19:14.506272650Z netopeer-server[1]: Initializing circuit-pack DEG8-AMP (dummy-amp)
2023-06-07T10:19:14.506303062Z netopeer-server[1]: Initializing circuit-pack DEG8-WSS (dummy-wss)
2023-06-07T10:19:14.506466161Z netopeer-server[1]: Initializing circuit-pack DEG9-AMP (dummy-amp)
2023-06-07T10:19:14.506493900Z netopeer-server[1]: Initializing circuit-pack DEG9-WSS (dummy-wss)
2023-06-07T10:19:14.506524438Z netopeer-server[1]: Initializing circuit-pack SRG1-WSS (dummy-wss)
2023-06-07T10:19:14.506719760Z netopeer-server[1]: Initializing circuit-pack SRG1-AMP (dummy-amp)
2023-06-07T10:19:14.506747786Z netopeer-server[1]: Initializing circuit-pack SRG1-CS (dummy-wss)
(...)
2023-06-07T10:19:14.508365215Z netopeer-server[1]: Starting FMON thread for org-openroadm-device data
model.
2023-06-07T10:19:14.542438216Z netopeer-server[1]: Netopeer server successfully initialized.

11.5.2 ONOS Discovery Latency

Datastore dimensions

4-degrees 6-degrees 9-degrees

30.212 ms 39.842 ms 43.743 ms

It’s worth explaining that the difference between the times of this test wrt. those described is

sect. 6.5.4 can be explained by the fact that ONOS uses separate threads for every device so to

achieve a high degree of parallelism.

11.5.3 Connection latency

This KPI has been measured on two ‘flavours’ of the datastore:

• A “small datastore” containing only the MC and NMC interfaces needed for creating the

roadm-connections

• A “large datastore” containing a full set of 100 GHz frequency slots in the C-Band, 191.3

to 196.1 GHz, on all available degrees, resulting in additional 384, 576 and 864 interface

definitions for the 4-, 6- and 9-degrees cases.

 Small datastore Large datastore

Connection 4-degrees 6-degrees 9-degrees 4-degrees 6-degrees 9-degrees

DEG1 – DEG2 172 ms 232 ms 305 ms 822 ms 1.286 ms 2.318 ms

DEG1 – last DEG 201 ms 244 ms 297 ms 824 ms 1.353 ms 2.493 ms

From the table, it is quite clear that the nodal degree is the main factor influencing connection

setup times, while the type of the connection (i.e. if between two adjacent or two distant

degrees) have negligible influence. In the “Large datastore” case, this is even more apparent

because of the fact that a higher number of degrees means a larger number of MC and NMC

interfaces populating the datastore.

 D4.2 GA Number 101016663

132

12 OPENCONFIG AGENT

12.1 INTRODUCTION
There will be two different implementations of the OpenConfig agent. One implemented at CTTC

with the main aim of integrating it with the CTTC developed multi-band transceiver and one

implemented at CNIT with the main aim of integrating it into the packet-optical SONiC based

node. Since the software architecture, interfaces, and proposed KPIs are the same, both

implementations are described in this section.

OpenConfig agent is an implementation of an SDN agent using NETCONF/YANG with the

OpenConfig data models. It implements a subset of the data models, namely the OpenConfig

platform and optical transport as well as some extensions devised in the context of B5G-OPEN

to report details about the transceiver operational modes.

The software relies on ConfD free, a Tail-f/Cisco management agent software framework for

network elements. It enables the industry adoption of NETCONF and YANG and provides a

simple mechanism to develop SDN agents focusing on the business logic and on the actual data

models and semantics.

Figure 12.1: OpenConfig agent scope and macroscopic architecture

12.2 DESCRIPTION AND INTERNAL ARCHITECTURE
OpenConfig agent relies on a ConfD process running, which implements the basic

NETCONF/Yang framework. The software pre-compiles data models and keeps a Configuration

Database (CDB).

Open Optical Terminals in general cover transponders, switchponders, muxponders, etc. with

the ability to switch and multiplex multiple client signals into optical signals. The agent deals

Data Modelling Language

SDN Controller

Transponder
Device

(Single domain)

Agent
Transponder

Model Driven Development

Interface Definition Language

NETCONF

Data Model

Protocol

Protocol

NBI

SBI

Towards device or (sub)controllers

 D4.2 GA Number 101016663

133

with uniform components hierarchy, multiplexing stages and Cross-connection logic discovery

and Optical channel configuration (Frequency, power and operational mode).

The actual logic is implemented as a second process that connects to the ConfD daemon via

dedicated sockets. This process is written in C++ and implements different classes for interacting

with the ConfD engine. MAAPI is a C API which provides full access to the ConfD internal

transaction engine. The CDB API can read (committed) configuration from the CDB and has

functions like cdb_set_value for operational (state) data only. With MAAPI it is possible to create

or attach to existing transaction and access configuration data in the CDB. The modifications

will be then propagated at commit time of the transaction.

Notably, the agent takes care of the following aspects:

- Notification of changes in the configuration database: in this sense, the actual SDN agent

may react and configure the hardware accordingly. In particular, it registers appropriate

call-backs for changes in the configuration of Optical Channels, including the actual

frequency, transmit optical power and operational mode.

- It relies on CDB API and MAAPI from ConfD to write on the operational data store, in

such a way that operational data can be written to the ConfD database based on the

status of the hardware. In particular, the agent MUST report the composition of the

actual device in terms of components and subcomponents and reflect configuration

changes (e.g., config/frequency) into state values (e.g., state/frequency).

Figure 12.2: SDN Controlled SBVT

SDN CONTROLLER

DAC

MB S-BVT1

PIN1+TIA1

Laser1
C-band

Laser2
S-band

PIN2+TIA2

BVRx1
DSP

BVRx2
DSP

MZM2

MZM1

DAC
ADC

(OSC)

ADC
(OSC)

S-band BVT2

BVTx1
DSP

C-band BVT1

ROADM-1

ROADM-2

150km

35km

OXC-2

OXC-1

OPENCONFIG SERVER

OpenConfig agent OpenConfig agent

Laser
DAC

(DSP TX)

OpenConfig agent

S/P

Mapping

Add TS

N-IFFT

Add CP

P/S
RF

upconversion

Demapping

S/P

CP removal

N-FFT

Equalization

TS removal

RF
downconversion

P/S

BVTx2
DSP

REST

REST

REST

MB Optical
aggregator/
distributor

ADC
(DSP Rx)

 D4.2 GA Number 101016663

134

12.3 INTERFACE SPECIFICATION
The interfaces of the component are specified in Section 2.1, on the usage of OpenConfig for

optical terminal devices. The agent relies on NETCONF/YANG as the basic framework, with a

subset of the supported data models, mainly:

openconfig/optical-transport/openconfig-transport-types@2017-08-16.yang

ietf/ietf-interfaces@2014-05-08.yang

openconfig/interfaces/openconfig-interfaces@2017-07-14.yang

openconfig/types/*.yang

openconfig/platform/*.yang

openconfig/optical-transport/*.yang

In particular, the agent also implements the following extensions, detailed previously in the

document

b5gopen/openconfig-terminal-device-property-types.yang

b5gopen/openconfig-terminal-device-properties.yang

The set of functional tests and workflows that are in scope of B5G-OPEN are: i) device discovery

(NETCONF GET) and ii) OpenConfig Component discovery (NETCONF GET). The figure below

shows an example of exchange to configure the frequency, target output power and operational

mode.

Figure 12.3: configuration of a SBVT Optical Channel using OpenConfig

12.4 FUNCTIONAL TESTS AND VALIDATIONS
The tests that have been carried to validate the component are the following:

- Startup of the ConfD daemon and loading of initial operational and configuration data

- Retrieval of the datastore of the NETCONF agent.

augment /oc-platform:components/oc-platform:component:
+--rw optical-channel

+--rw config
| +--rw frequency? oc-opt-types:frequency-type
| +--rw target-output-power? decimal64
| +--rw operational-mode? uint16
| +--rw line-port? -> /oc-platform:components/component/name
+--ro state

+--ro frequency?
+--ro target-output-power?
+--ro operational-mode?
+--ro line-port?
+--ro group-id?
+--ro output-power
| +--ro instant? decimal64
| +--ro avg? decimal64
| +--ro min? decimal64
| +--ro max? decimal64
| +--ro interval? oc-types:stat-interval
| +--ro min-time? oc-types:timeticks64
| +--ro max-time? oc-types:timeticks64
+--ro input-power
+--ro laser-bias-current
+--ro chromatic-dispersion
+--ro polarization-mode-dispersion
+--ro second-order-polarization-mode-dispersion
+--ro polarization-dependent-loss

<edit-config>

<target>{{target}}</target>

<config>

<components xmlns="http://openconfig.net/yang/platform">

<component>

<name>{{och_component_name}}</name>

<oc-opt-term:optical-channel xmlns:oc-opt-term

="http://openconfig.net/yang/terminal-device">

<config>

<frequency>{{freq_value}}</frequency>

<target-output-power>{{power}}</target-output-power>

<operational-mode>{{mode}}</operational-mode>

</config>

</oc-opt-term:optical-channel>

</component>

</components>

</config>

mailto:openconfig/optical-transport/openconfig-transport-types@2017-08-16.yang
mailto:ietf/ietf-interfaces@2014-05-08.yang
mailto:openconfig/interfaces/openconfig-interfaces@2017-07-14.yang

 D4.2 GA Number 101016663

135

- Retrieval of components of the OpenConfig terminal device, including focusing on the

optical channel augment.

- Retrieval of the characteristics and current state of an Optical Channel components

- Dynamic configuration of an optical channel attributes. This can be done as an emulated

device, or integrated with CTTC S-BVT and SONiC-based packet-optical nodes (i.e.,

pluggable configuration).

- Characterization of a given Operational Mode (e.g., mode-id 100) in terms of B5G-OPEN

physical impairment validation.

12.5 COMPONENT INTEGRATION AND ROADMAP
The OpenConfig agent is integrated with the ONOS SDN Controller, for the control of sliceable

BVTs.

Roadmap:

Q1/2023 – Software availability of the agent, considering a basic implementation focusing on

aspects such as component discovery, optical channel configuration and operational mode

characterization based on B5G-OPEN extensions.

Q3/2023 – Integration with ONOS SDN controller and functional tests. This requires the ONOS

SDN controller to connect to the OpenConfig agent and discover basic blocks and operational

modes.

Q3-Q4/2023 – Performance evaluation and evaluation/refinement of KPIs of the component.

12.6 COMPONENT KPIS
The considered set of component KPIs that can be measured independently:

- Instantiation delay and footprint.

- Discovery latency.

- Operational Mode characterization: measure the time and the control plane overhead

(in terms of bytes, and throughput) it takes for an SDN controller to discover the details

of a given operational mode

- Transaction delay: the time it takes to send a configuration change, and this is reflected

in the datastore. The focus shall be to change an Optical channel frequency, power, and

operational model. This KPI will be evaluated with and without hardware.

KPI Definition Methodology Results

Instantiation
Delay

Characterize aspects related to
instantiation of the agent, as well
as aspects related to memory
usage.

Measure the time to launch the
application and agent.

See below

 D4.2 GA Number 101016663

136

Discovery
Latency

SDN controller to discover the
components of the transceiver
upon a NETCONF get operation.

Measure the time and the
control plane overhead (in terms
of bytes, and throughput).

See below

Operational
Mode
Characterization

Obtain the parameters of a given
Operational Mode given its mode-
id

Measure the time and the
control plane overhead (in terms
of bytes, and throughput) the
details of a given operational
mode

See below

Transation
Delay

The time it takes to send a
configuration change, and this is
reflected in the datastore. The
focus shall be to change an Optical
channel frequency, power, and
operational model. This KPI will be
evaluated with and without
hardware.

Measure the time for a simple
transaction (Note: without
hardware configuration)

See below

12.6.1 Instantiation Delay

Measure the time to execute the following script

#!/bin/bash

sudo ./bin/confd --verbose -c etc/confd/confd.conf

Load Configuration Data - l:load o:ignore operational data
echo "Loading config data..."
./bin/confd_load -l -o -e ./openconfig/openconfig-data.xml

echo "Loading operational data..."
Load operational data
./bin/confd_load -C -e ./openconfig/openconfig-operational.xml

Load basic access rules (merge)
echo "Loading access rules..."
./bin/confd_load -m -l ./var/confd/cdb/aaa_init.xml

echo "Running agent"
/opt/confd/agent/build/ocagent

time ./b5gopen_time1.sh
Loading config data...
Loading operational data...
Loading access rules...

real 0m1,234s
user 0m0,020s
sys 0m0,017s

Measure the time to launch the application specific C++ agent that maps the ConfD frontend to

hardware configuration.

[2023-09-13 15:06:26.363601]: (agent) : calling confd_init
(...)

 D4.2 GA Number 101016663

137

[2023-09-13 15:06:26.373322]: Connecting CDB data socket for config data retrieval: 127.0.0.1
[2023-09-13 15:06:26.373589]: Connecting MAAPI socket for transactions: 127.0.0.1
[2023-09-13 15:06:26.373763]: Subscribing to CDB events 127.0.0.1
[2023-09-13 15:06:26.373809]: (subscribe) : setting up subscriptions
[2023-09-13 15:06:26.374392]: (pre_poll) : Pre-Poll reading configurations
[2023-09-13 15:06:26.374632]: (get_components_list) : CARD-A-In
(...)
[2023-09-13 15:06:26.377165]: (get_optical_channel_configuration) :
[agent::get_optical_channel_configuration] [OCh OCH-A-Out-1] 191500000 launch power 0 using mode 0
[2023-09-13 15:06:26.377316]: (get_optical_channel_configuration) : [OCh OCH-A-Out-1] validated
191500000
[2023-09-13 15:06:26.377983]: (cdb_write_operational) : [agent::cdb_write_operational] power: 0
[2023-09-13 15:06:26.378015]: (cdb_write_operational) : [agent::cdb_write_operational] freq.:
191500000
[2023-09-13 15:06:26.378028]: (cdb_write_operational) : [agent::cdb_write_operational] mode.: 0
[2023-09-13 15:06:26.378533]: (get_optical_channel_configuration) :
[agent::get_optical_channel_configuration] [OCh OCH-A-Out-2] 191500000 launch power 0 using mode 0
[2023-09-13 15:06:26.378731]: (get_optical_channel_configuration) : [OCh OCH-A-Out-2] validated
191500000
[2023-09-13 15:06:26.379378]: (cdb_write_operational) : [agent::cdb_write_operational] power: 0
[2023-09-13 15:06:26.379398]: (cdb_write_operational) : [agent::cdb_write_operational] freq.:
191500000
[2023-09-13 15:06:26.379410]: (cdb_write_operational) : [agent::cdb_write_operational] mode.: 0
[2023-09-13 15:06:26.379500]: (pre_poll) : Pre-Poll reading operational modes
[2023-09-13 15:06:26.380075]: (get_operational_modes) : mode 100

The initial startup has taken 8ms, which is several orders of magnitude faster than the overall

agent startup time.

12.6.2 Discovery Latency

/opt/confd/bin/netconf-console -u USER -p PASSWD --host=127.0.0.1 --port=830
--get --with-defaults='explicit' -x "/components/component"

time `./netconf_components | wc `

real 0m0,375s
user 0m0,046s
sys 0m0,047s

469 lines

12.6.3 Operational Mode Characterization

Example:
/opt/confd/bin/netconf-console -u USER -p PASS --host=127.0.0.1 --port=830 -
-get -x "/operational-modes"

Output:

<?xml version="1.0" encoding="UTF-8"?>
<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
 <data>
 <operational-modes xmlns="http://example.net/yang/openconfig-terminal-device-properties">
 <mode-descriptor>
 <mode-id>100</mode-id>
 <state>
 <mode-id>100</mode-id>
 <mode-type xmlns:oc-opt-term-prop-types="http://example.net/yang/openconfig-terminal-
device-property-types">oc-opt-term-prop-types:TRANSCEIVER_MODE_TYPE_EXPLICIT</mode-type>
 </state>
 <explicit-mode>

 D4.2 GA Number 101016663

138

 <operational-mode-capabilities>
 <state>
 <modulation-format>oc-opt-term-prop-types:MODULATION_FORMAT_QPSK</modulation-format>
 <bit-rate xmlns:oc-opt-types="http://openconfig.net/yang/transport-types">oc-opt-
types:TRIB_RATE_40G</bit-rate>
 <baud-rate>20000000000.0</baud-rate>
 <optical-channel-spectrum-width>50.0</optical-channel-spectrum-width>
 <min-tx-osnr>40.0</min-tx-osnr>
 <min-rx-osnr>33.0</min-rx-osnr>
 <min-input-power>0.0</min-input-power>
 <max-input-power>9.0</max-input-power>
 <max-chromatic-dispersion>200.0</max-chromatic-dispersion>
 <max-differential-group-delay>1.0</max-differential-group-delay>
 <max-polarization-dependent-loss>0.12</max-polarization-dependent-loss>
 </state>
 <fec>
 <state>
 <fec-coding>oc-opt-term-prop-types:FEC_HD</fec-coding>
 <coding-overhead>7.0</coding-overhead>
 <coding-gain>8.53</coding-gain>
 <pre-fec-ber-threshold>0.000000000001</pre-fec-ber-threshold>
 </state>
 </fec>
 <penalties>
 <penalty>
 <parameter-and-unit xmlns:oc-opt-term-prop-types="http://example.net/yang/openconfig-
terminal-device-property-types">oc-opt-term-prop-types:CD_PS_NM</parameter-and-unit>
 <up-to-boundary>800.0</up-to-boundary>
 <state>
 <parameter-and-unit xmlns:oc-opt-term-prop-
types="http://example.net/yang/openconfig-terminal-device-property-types">oc-opt-term-prop-
types:CD_PS_NM</parameter-and-unit>
 <up-to-boundary>800.0</up-to-boundary>
 <penalty-value>10.0</penalty-value>
 </state>
 </penalty>
 <penalty>
 <parameter-and-unit xmlns:oc-opt-term-prop-types="http://example.net/yang/openconfig-
terminal-device-property-types">oc-opt-term-prop-types:PMD_PS</parameter-and-unit>
 <up-to-boundary>0.77</up-to-boundary>
 <state>
 <parameter-and-unit xmlns:oc-opt-term-prop-
types="http://example.net/yang/openconfig-terminal-device-property-types">oc-opt-term-prop-
types:PMD_PS</parameter-and-unit>
 <up-to-boundary>0.77</up-to-boundary>
 <penalty-value>1.0</penalty-value>
 </state>
 </penalty>
 <penalty>
 <parameter-and-unit xmlns:oc-opt-term-prop-types="http://example.net/yang/openconfig-
terminal-device-property-types">oc-opt-term-prop-types:PDL_DB</parameter-and-unit>
 <up-to-boundary>0.12</up-to-boundary>
 <state>
 <parameter-and-unit xmlns:oc-opt-term-prop-
types="http://example.net/yang/openconfig-terminal-device-property-types">oc-opt-term-prop-
types:PDL_DB</parameter-and-unit>
 <up-to-boundary>0.12</up-to-boundary>
 <penalty-value>1.0</penalty-value>
 </state>
 </penalty>
 </penalties>
 <filter>
 <state>
 <pulse-shaping-type>oc-opt-term-prop-types:OFF</pulse-shaping-type>
 </state>
 </filter>
 </operational-mode-capabilities>
 <optical-channel-config-value-constraints>
 <state>
 <min-central-frequency>191675804</min-central-frequency>
 <max-central-frequency>205281058</max-central-frequency>
 <grid-type xmlns:oc-opt-term-prop-types="http://example.net/yang/openconfig-terminal-
device-property-types">oc-opt-term-prop-types:FLEX</grid-type>
 <adjustment-granularity xmlns:oc-opt-term-prop-
types="http://example.net/yang/openconfig-terminal-device-property-types">oc-opt-term-prop-

 D4.2 GA Number 101016663

139

types:G_50GHZ</adjustment-granularity>
 <min-channel-spacing>50.0</min-channel-spacing>
 <min-output-power>0.0</min-output-power>
 <max-output-power>25.0</max-output-power>
 </state>
 </optical-channel-config-value-constraints>
 </explicit-mode>
 </mode-descriptor>
 </operational-modes>
 </data>
</rpc-reply>

real 0m 0,323s
user 0m 0,147s
sys 0m 0,025s

this particular reply contains

- 84 lines (XML encoded, pretty printed)

- 4837 characters

12.6.4 Transaction Delay

/opt/confd/bin/netconf-console -u USER -p PASSWD --host=127.0.0.1 --port=830
--db=running --edit-config=payload.xml

Request:

<components xmlns='http://openconfig.net/yang/platform'>
 <component operation='merge'>
 <name>OCH-A-Out-1</name>
 <oc-opt-term:optical-channel xmlns:oc-opt-term='http://openconfig.net/yang/terminal-
device'>
 <oc-opt-term:config>
 <oc-opt-term:frequency>195300000</oc-opt-term:frequency>
 <oc-opt-term:target-output-power>10</oc-opt-term:target-output-power>
 <oc-opt-term:operational-mode>100</oc-opt-term:operational-mode>
 </oc-opt-term:config>
 </oc-opt-term:optical-channel>
 </component>
</components>

Response:

<rpc-reply xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="1">
 <ok/>
</rpc-reply>

real 0m 0,268s
user 0m 0,010s
sys 0m 0,009s

 D4.2 GA Number 101016663

140

13 SONIC-BASED PACKET OPTICAL NODE

13.1 COMPONENT ARCHITECTURE
The Software for Open Networking in the Cloud, i.e., SONiC, [SONIC] is considered as the

Network Operating System (NOS) to be deployed on packet-optical IPoWDM nodes operated in

metro/aggregation networks. Within the B5G-OPEN project, SONiC has been extended with

several components provided in the form of docker containers: (1) a REST-based interface to get

status and perform configurations of optical pluggables and other node’s interfaces as described

in Sec. 4.8 (by CNIT); (2) a docker container running the OpenConfig agent; (3) a docker container

exposing P4 runtime interface toward the packet controller. Furthermore, in B5G-OPEN we rely

on the available SONiC BGP implementation.

Figure 13.1: internal architecture of the packet optical node.

13.2 INTERFACE SPECIFICATIONS

13.2.1 Toward the SDN optical controller

From OpenConfig agent to the SDN optical controller: the OpenConfig agent exposes a YANG-

based model to the SDN optical controller that is consumed through NETCONF.

The OpenConfig agent, inherited from the metro-haul project, has been deployed in the SONiC-

based device and extended on its SBI to map the commands received by the SDN optical

controller toward the REST APIs docker deployed in the NOS, see Sec. 4.8 for details on this

interface interface. For example, when the SDN controller requires to activate a coherent

pluggable the PUT method is used.

 D4.2 GA Number 101016663

141

13.2.2 Toward the SDN packet controller

Two different interfaces are exposed toward the packet controller.

From P4 agent toward SDN packet controller: we have deployed on the SONiC-based device a

container running the software switch BMW2 that exposes on its NBI the P4 runtime interface.

Such container is configured to acquire a set of the physical interfaces of the device and includes

them in the P4 pipeline. Validation of this interface is documented in [Gio23].

From BGP FRRouting application toward the SDN packet controller: for this interface case we

rely on the implementation of the BGP FRRouting application available in the reference SONiC

distribution, that applies the received layer 3 configurations to the device interfaces. Such

configurations are sent by the packet controller to the OpenConfig agent that, in turn, translates

it into FRRouting commands. Specifically, on top of the FRRouting application we have

developed the /Sonic/bgp/… REST endpoints that can be invoked by the OpenConfig agent or

even directly by the packet controller. Then the FRRouting app interacts with the SAI/SDK APIs

provided by the NOS to read and write the packet interface configuration.

13.2.3 Toward the telemetry system

A docker container including the telemetry agent can be deployed on the SONiC-based device

and integrated with the REDIS database residing in the device that acts as source of data. Once

agent deployment the interface toward the centralized telemetry system is the same described

in Se. 4.7, based on gRPC.

13.2.4 SBI toward SONiC native features

The several agents deployed on the SONiC NOS interface with the system calls using the REST

interfaces illustrated in Sec. 4.8. Specific endpoints have been deployed to be used by the several

agents.

• Endpoints /Sonic/Interface are used by the FRRouting app to configure IP properties.

• Endpoints /Sonic/InterfaceConfig are used by the FRRouting app to configure the port

speed

• Endpoints /Sonic/InterfaceStatus are used by the FRRouting app to retrieve interface

state

• Endpoints /Sonic/bgp are used by the FRRouting app to configure BGP

• Endpoints /Sonic/TransceiverConfig are used by the OpenConfig agent to configure and

monitor the coherent optical pluggables

However, each endpoint can also be directly invoked externally, and represents therefore a

configuration interface of the SONiC-based device. For example, the packet controller could

directly invoke the endpoints for performing IP of BGP configurations.

These REST endpoints are built upon different interfaces offered by the SONiC NOS. As an

example, the /Sonic/TransceiverConfig operates on top of the CMIS/C-CMIS APIs to actually read

and write the coherent pluggable configuration; while the /Sonic/Interface endpoints interact

with the SAI/SDK APIs to read and write the packet interface configuration.

13.3 COMPONENT INTEGRATION
The following components are integrated with the SONiC-based packet-optical node:

 D4.2 GA Number 101016663

142

• The agents deployed on the NOS, i.e., the P4 agent and the OpenConfig agent. Such

agents are deployed on the device in the form of docker containers and exposes their

interfaces toward the packet and the optical controllers.

• The optical controller is integrated by means of the interfaces exposed by the

OpenConfig agent.

• The packet controller is integrated through the utilization of the FRRouting application

deployed on the SONiC NOS and through the direct utilization of the REST endpoints

described in Sec. 4.8 and Sec. 16.2.4.

13.4 FUNCTIONAL VALIDATION
The performed functional validation concentrated on the multi-layer traffic switching.

Specifically, a packet traffic has been generated and injected on packet interfaces, routed

coherent modules, and finally received by the traffic generator to collect statistics. The

considered testbed is reported below including: a Spirent traffic generator, an EdgeCore

whitebox and one Lumentum ROADM.

Figure 13.2: testbed environment for functional validation.

During the functional validation only one switch was available at the CNIT premises. For this

reason, we have created two distinct VLANs on the switch (green and yellow in the figure) where

each VLAN includes one 10 Gbps interface (used to connect the Spirent traffic generator), and

three QSFP-DD slots, where one of those slots is equipped with a 400 Gbps coherent optical

pluggables. The coherent pluggables are connected back-to-back, so that traffic incoming on the

yellow VLAN is transmitted to the green VLAN.

Traffic is generated by the tester and injected on the yellow VLAN; the yellow coherent pluggable

forwards the traffic to the green VLAN. The Lumentum ROADM-20 is inserted in between the

two coherent pluggables (only in one of the two directions). This allow us to dynamically change

the optical path (e.g., using exit port 5201 or 5202), indeed we are also interested to understand

the duration of traffic disruption generated by this kind of events (i.e., change of optical path by

keeping the same optical channel).

 D4.2 GA Number 101016663

143

13.5 ROADMAP
White box equipped with 400 ZR/ZR+ transceivers are currently available at CNIT, TIM, and TID

labs. Integration performed with OpenConfig agent has been performed at CNIT, including the

functional validation. The measurements reported in Sec. 16.6.1 on the ZR/ZR+ performance

have been executed at TIM. The measurements reported in Sec. 16.6.2 for the estimation of the

spectrum width of the channel generated by the coherent pluggables has been performed at

CNIT exploiting also the box provided by TIM.

At the time of writing, the key features for the packet-optical node have been introduced and

validated with bilateral integrations. In the remaining of WP4, the ongoing activities are:

• test optical coherent pluggables performance in traffic recovery scenarios.

• automate the generation of the OpenConfig YANG model.

• integration with the telemetry agent.

13.6 KPIS
The considered KPIs concentrate on the performance of the coherent optical pluggables

installed in a whitebox Edgecore 32x 400GbE QSFP56-DD switch, system ONIE, chipset

BCM56880 Trident 4 12.8 Tb/s equipped with 400ZR and 400ZR+ coherent pluggable modules.

The white box runs the open-source NOS SONiC_20220819.

13.6.1 ZR and ZR+ frequency configuration

The performance of 400ZR/ZR+ transceivers has been evaluated in terms of configuration time.

Specifically, the experiment consists in the variation of the central frequency, it starts with an

end-to-end connectivity established using the central frequency value “Start F” that is modified

to the value “Stop F” [Morro23]. The frequency shifts have been performed considering both

nearby frequencies and distant frequencies in order to check whether the reconfiguration time

depends on the frequency gap to be covered. For each experiment, two intervals have been

collected: the first (named prompt in the table) is the time interval taken by SONiC to receive

the command and return the prompt after a frequency change command; the second (named

laser in the table) is the time interval passed from the command issue and the signal detection

at the RX.

Figure 13.3: control performance of coherent pluggable modules in IPoWDM whitebox.

As a first remark it is important to say that a time of around one minute is required Analysing

the results collected using the two classes of pluggable transponders (e.g., the ZR and ZR+

modules), the modules present considerable differences. Specifically, ZR+ modules guarantee a

faster laser activation time. Moreover, the table shows that the (re)-configuration time interval

does not depend on the gap between the starting and stop frequencies. In addition, the

 D4.2 GA Number 101016663

144

collected results show that modules of the same type present similar behavior, showing a stable

and uniform configuration time.

13.6.2 ZR+ frequency slot evaluation

The CMIS driver of the coherent pluggables allows to configure the channel using two different

grids namely: 100 GHz and 75 GHz. For example, with the 100 GHz grid if the specified central

frequency does not exactly match the frequency grid, the system automatically round the

specified central frequency to match the grid.

In this environment, we performed a set of experiments to understand which is the actual width

of the of the 400 Gbps optical channel. For this experiment we have used the setup illustrated

in the figure below, using coherent optical pluggables provided by Cisco (model 400G QSFP-DD

High-Power).

In the illustrated setup, the WSS is initially configured at the proper central frequency and 100

GHz of width. The width is gradually narrowed, while monitoring the QoT of the channel on the

receiver side (i.e, BER, OSNR, eSNR and STATUS of the interface). The following table illustrates

the experimental results.

Table 6: Experimental results of the ZR+ pluggable evaluation

From the results illustrated in the table, it is clear that the QoT of the connectivity does not

degrade up to the width of 68 GHz, and the channel remains up till the width of 60 GHz. This

 D4.2 GA Number 101016663

145

result will help to save spectrum resources in the network, because the optical SDN controller

could allocate a spectrum of 6 slots in the flexible grid (i.e., 75 GHz).

 D4.2 GA Number 101016663

146

14 OPENROADM AGENT

The Adtran OpenROADM agent is creating OpenROADM Netconf APIs for Adtran FSP 3000

CloudConnect devices. Depending on the cards in a single card NE, multi-card Ne or multi-shelf

Ne, the agent is creating multiple northbound APIs for a single managed network element (NE).

These NETCONF APIs correspond to the RDM (ROADM), XPDR (Transponder, Muxponder,

Flexponder, colored Pluggables), or ILA (inline amplifier) data models of OpenROADM.

The OpenROADM agent was developed in funded research projects OTB-5G+ and AI-NET-

PROTECT, and extended in B5G-OPEN. The agent is based on several open-source projects and

software engineering concepts:

• OpenDaylight libraries at its core

• MD-SAL/ADVAnced code generation from YANG models using Java annotations

• Clean, declarative, event-based, functional, asynchronous APIs for YANG-bound data

flow

• CPython-integration via Jep for interactive data analysis and automation scripting,

including support for Jupyter notebooks

• completely Gradle-managed application life-cycles

Figure 14.1: OpenROADM agent architecture.

The OpenROADM agent is based on a library named NetEmu. NETEMU. NETEMU's API design

draws heavily from the modular structure of CESNET's sysrepo/netopeer2 C libraries and tools

for NETCONF/YANG application development, which has already been described.

NETEMU is using open-source component from OpenDaylight, namely MD-SAL, the NETCONF,

and yangtools. In addition to NETEMU, a EMUROADM library was developed as helper library

for OpenROADM yang data models. The agent itself is based on the EmuFlex application which

creates connections to one or multiple NEs as configured in the FSP-connections.xml file,

generates Adran Operating System (AOS) yang data store, the corresponding OpenROADM data

bindings, and allows the definition of data bindings.

 D4.2 GA Number 101016663

147

Figure 14.2: OpenROADM implemented over NetEmu

 D4.2 GA Number 101016663

148

15 AI/ML MODELS FOR PSD AND POWER MANAGEMENT

This component is a machine learning application towards augmented optical networks and is

called “Automatic power correction”. Optical network is like photography before autofocus,

where you needed to find a sweet spot of the optical lens before taking a picture otherwise it

leaded to a blurry photography. The nonlinear behavior of optical transmission makes picking

the best operating power tricky as there is a sweet spot to find between linear and nonlinear

effects. It is the so-called nonlinear threshold. This sweet spot allows to operate in the weakly

nonlinear regime.

Monitoring linear and nonlinear noise is quite complex in a live network which makes it

attractive for machine learning applications. Our idea is to monitor an optical power spectral

density which contains both linear and nonlinear impairments and the amount of linear and/or

nonlinear effects gives a different shape of this optical spectrum. For extreme conditions like

pure linear transmission regime or high nonlinear regime, a human eye can recognize the

different shapes and classify them. For more intermediate regimes (i.e. where optical network

operates), it is actually very difficult to distinguish for the human eye, but artificial neural

network (ANN) is performing very well. In addition, the ANN can predict the optimal power

correction to be applied to operate in the sweet spot of the nonlinear threshold.

The component leverages 3 main steps:

- monitoring an optical power spectral density of a given lightpath

- using telemetry to send it to the monitoring database

- AI/ML application for automated power reconfiguration, which is the main component

module.

15.1 COMPONENT ARCHITECTURE
The automatic power correction component is a management plane module which allows to

optimize a given ligthpath configuration. It works very closely with the physical layer as it

influences the launch power of the transmitted signal. It can provide recommendations showing

the power correction to be applied and the expected gain, then let the end user trigger the

optimization reconfiguration.

The component itself is an AI/ML application that processes the optical power spectrum density

(PSD) to predict an estimated power correction (∆�̂�). To learn how to connect the inputs to

targets, the ANN needs a lot of training examples in different operating conditions. We provided

these examples by conducting many lab experiments. Once the neural network has been

trained, we can start testing it. The ANN works with 1 hidden layer with 10 neurons and 1 output

layer with 1 neuron. A neuron is a sequence of two operations: a weighted sum followed by a

nonlinear manipulation. It is a fully connected ANN meaning that all neurons of the following

layer take as input all neurons from the preceding layer. The hidden layer employs sigmoid

function, and the output layer uses the identity function.

We implement a pre-processing step to normalize the PSD in the range [0, 1]. Figure 15-1 shows

the architecture of the component.

 D4.2 GA Number 101016663

149

Figure 15-1: architecture of the automatic power correction component

Then, it can expose the expected gain. For instance, close to the nonlinear threshold, the

expected gain can be up to 1dB gain in signal-to-noise ratio and a negligible loss in transmission

quality.

15.2 INTERFACES
The PSD component will be used as a standalone component. However, it is integrated with an

optical mesh network to collect monitored PSD data and a telemetry database to feed the

automatic power correction component, as shown in the figure below.

Figure 15-2: interconnection of the automatic power correction component with optical mesh network and telemetry

database

As illustrated examples, the green and pink lightpaths in Figure 15-2 are leveraging the

component to optimize their performance. Each of them has the following workflow. First, an

optical spectrum density is monitored in the optical node thanks to an optical spectrum analyzer

or equivalent hardware. Then, the optical node agent (responsible for communicating with the

control and management plane) sends to the telemetry database the monitored PSD via a

gRPC/gNMI interface. Once the database is populated, the automatic power correction

component can read from it and can provide recommendations for power reconfiguration with

the associated gain.

 D4.2 GA Number 101016663

150

15.3 FUNCTIONAL VALIDATION
To validate the component, the following tests could be performed:

Test Description

Training and
validation of
AI/ML

Generate one (or more) set of measurements or simulations with different
operating conditions (e.g. different propagation lengths, fiber characteristics,
channel loading, launched power, etc.)

Accuracy
validation

Evaluate the error between known optimal powers and estimated ones

Component
validation

Validate the AI/ML component by visualizing the expected SNR gain after
applying the power correction

15.4 COMPONENT INTEGRATION
This component will be used as a standalone component. Nevertheless, it is integrated with a

physical layer mesh optical networks using telemetry to populate the database with optical

power spectral density. This is needed for the functional validation of the component described

in the previous subsection.

15.5 ROADMAP
• Q3/2023: 2nd version of the PSD component, assessing compression rate vs accuracy.

• Q2/2024: 3rd version of the PSD component, evaluating performance in a networking
environment.

15.6 COMPONENT KPIS
KPI Definition Methodology

Gain/loss of
performance

The difference between the
signal-to-noise ratio before
and after using this AI/ML
component.

2 SNR measurements

Scalability in
terms of
number of
input points

The number of points required
for the optical PSD to get a
given accuracy

Setup scenarios to reduce the PSD size, e.g.
scenario #1 could take 1 point every x
samples; scenario #2 could take y samples
located at the edges.

Compression
rate

The complexity reduction of
the ANN architecture (without
retraining)

Setup scenarios

The gain / loss of performance of the component is investigated and the results are shown in

Figure 15-3. The power correction can provide up to 1dB SNR gain and down to 0.15 dB SNR loss.

We notice that the loss is close to the nonlinear region threshold and has negligible performance

impact. In contrast, if we operate in the linear or nonlinear region, there is a subsequent gain to

obtain by applying the power correction.

 D4.2 GA Number 101016663

151

Figure 15-3: SNR gain/loss performance

We investigated the scalability of the component. To reach this goal we defined different

scenarios to play with the number of inputs. A first scenario is to compress the input PSD by

taking fewer points equally spaced. We investigated 3 different configurations with either 20,

100 and 315 input PSD points. As a figure of merit, we defined the error as the difference

between the true power and the predicted output power. We plot in Fig. 15-4 the standard

deviation of the error as a function of the number of input PSD points. As expected, when the

number of PSD points is low, the standard deviation increases. For 20 PSD points, the error

standard deviation is 1.67dB while for 315 PSD points it can decrease down to 0.41 dB. To

maintain a reasonable performance and to stay close to the nonlinear threshold area, we can go

down to 100 PSD points which gives 1dB error standard deviation for the investigated line

configurations.

Figure 15-4: investigation of scalability of the component

A second scenario is to input only a part of the PSD. Since the nonlinearities are visible on the

edge of the spectrum, one can think that removing the points corresponding to the center of

the spectrum will not impact too much the performance of the component. This assumption will

be investigated next.

 D4.2 GA Number 101016663

152

16 TELEMETRY SYSTEM

16.1 INTRODUCTION
B5G/OPEN distributed telemetry system integrates measurement and event data collection and

supports intelligent data aggregation nearby data collection, so agents receive and analyze

measurements before sending to a centralized manager.

16.2 INTERNAL WORKFLOW AND INTERFACES
A detailed architecture of the proposed telemetry system is presented next where the internal

architecture of telemetry agents inside node agents and the telemetry manager is shown.

Figure 16.1: Proposed telemetry architecture

Let us describe a typical telemetry workflow valid for a wide range of use cases. The node agent

includes modules (denoted data sources) that gather telemetry data from observation points in

the optical nodes. Examples include optical spectrum analysers (OSA) in the ROADMs and data

from digital signal processing, e.g., optical constellations, in the TPs. A telemetry adaptor has

been developed, so data sources can export collected data to the telemetry system; specifically,

the adaptor receives raw data from the data source and generates a structured JSON object,

which is then published in the local Redis DB (labelled 1 in the figure). The periodicity for data

collection can be configured within a defined range of values. A number of algorithms can be

subscribed to the collected measurements. In this example, let us assume that only one

algorithm is subscribed, which processes the measurements locally. Such processing might

include doing: i) no transformation on the data (null algorithm); ii) some sort of data

aggregation, feature extraction or data compression; or iii) some inference (e.g., for degradation

detection). The output data (transformed or not) are sent to a gRPC interface module through

the Redis DB (not shown in the figure) (2), which conveys the data to the telemetry manager.

Because gRPC requires a previous definition of the data to be conveyed, our implementation

defines a unique message of type bytes, which allows generalization of the telemetry data to be

conveyed. Note that, although such encoding could largely increase the volume of data to be

transported, intelligent data aggregation performed by telemetry agents could reduce such

volume to a minimum.

In the telemetry manager, the data are received by a gRPC interface module that publishes them

in the local Redis DB, so subscribed algorithms can receive them. The algorithms in the telemetry

manager can implement functions related to data aggregation, inference, etc. Once processed,

the output data is published in the local Redis DB (4) and can be stored in the telemetry DB (5)

 D4.2 GA Number 101016663

153

and/or be exported to external systems (6). Interestingly, algorithms in the telemetry manager

can communicate with those in the telemetry agents using the gRPC interface (7-8). Examples

of such communication include parameter tuning, among others.

16.3 FUNCTIONAL VALIDATION

 The following tests have been carried out to validate the telemetry system:

a. Generate measurements using the data source and the telemetry adaptor and verify

that:

1. they are received by the selected algorithm in the telemetry agent;

2. they are sent to the telemetry manager and stored in the measurements DB.

b. Generate events with the SDN controller and verify that they are stored in the events

DB.

16.4 COMPONENT INTEGRATION

The Telemetry system can collect measurements from any data source provided that they

implement the telemetry adaptor. Examples of data sources for measurements are

transponders, ROADMs, and OSAs. Examples of data sources for events are controllers and

agents. In addition, the telemetry manager integrates also with any other management system

using external delivery systems, like Kafka [KAFKA].

16.5 ROADMAP
The Telemetry system has already been demonstrated at OFC 2023, where we showed

integration with network devices from Nokia and Adtran, as well as with the CTTC’s SDN

controller.

16.6 COMPONENT KPIS

KPI Definition Methodology Results

Optical
Constellation
Data
Compression
with
Autoencoder
s

Compression technique
applied to optical
constellation
measurements.

Measurements from the
original and the processed
sample are taken in the
Telemetry Agent

Samples are injected in the
Telemetry Node with a
defined rate.

625:1 with
reconstruction
error < 2%

Spectrum
Dimensionali
ty Reduction
with Feature
Extraction

Dimensionality
Reduction technique
applied to spectrum
measurements.

Measurements from the
original and the processed
sample are taken in the
Telemetry Agent

Compression
rate for
spectrum
using features
extraction:
7.5:1

 D4.2 GA Number 101016663

154

Samples are injected in the
Telemetry Node with a
defined rate.

Optical Constellation Data Compression with Autoencoders

This KPI is related with the data compression while using streaming telemetry. To be able to

handle the high process requirements of streaming telemetry and in particular with Optical

Constellation, some compression techniques have to be applied. For this reason, we propose to

use a type of neural network called AE that has two components: the encoder, which maps input

data into a lower-dimensional latent space, and the decoder, which gets data from the latent

space and reconstructs the original data back.

Results show a compression ratio of 625:1 with a reconstruction error that is negligible. To put

some numbers, the AE encoder receives a sample of 10,000 symbols and generates a latent

space Z of 32 symbols. This significantly size reduction enables the use of less demandant

telemetry systems and less storage requirements to process and store all the data.

Spectrum Dimensionality Reduction with Feature Extraction

This KPI is also related to data compression but in this case spectrum samples and using a

dimensionality reduction technique called Feature Extraction. This technique is intended to

generate a set of features Φ(M) that characterize a measurement sample M. For instance, a

sample of a 75 GHz channel that is represented with a list of 75 pairs assuming a GHz granularity,

is processed to generate a set with 13 features. This features then can be used on failure

detection without having to convey the whole spectrum sample.

 D4.2 GA Number 101016663

155

17 MESARTHIM – FAILURE MANAGEMENT USING A SNR DIGITAL

TWIN

The performance of optical devices can degrade because of aging and external causes like, for

example, temperature variations. Such degradation might start with a low impact on the Quality

of Transmission (QoT) of the supported lightpaths (soft-failure). However, it can degenerate into

a hard-failure if the device itself is not repaired or replaced, or if an external cause responsible

for the degradation is not properly addressed. MESARTHIM compares the QoT measured in the

transponders with the one estimated using a QoT tool. Those deviations can be explained by

changes in the value of input parameters of the QoT model representing the optical devices, like

noise figure in optical amplifiers and reduced Optical Signal to Noise Ratio in the Wavelength

Selective Switches. By applying reverse engineering, MESARTHIM estimates the value of those

modelling parameters as a function of the observed QoT of the lightpaths.

17.1 WORKFLOW AND INTERFACES
Among the effects degrading the QoT within optical systems, we consider degradations arising

from ROADMs and In-Line OAs, where a ROADM consists of WSSs and OAs. Both building blocks

face aging and non-ideal conditions. For example, although OAs are considered robust devices,

they also suffer time-varying effects, which might increase over time due to the aging of the

amplifier building blocks. In addition, the Noise Figure (NF) is frequency-dependent and, as the

allocation of the spectrum might become time-dependent. Therefore, the NF can be modelled

as a time-frequency variation. The pump lasers of the EDFAs also present degradation, which

can be adjusted thanks to internal control loops, but which still reduces the EDFA efficiency. For

what concerns the WSSs, they might suffer temperature-dependent variations, which might lead

to frequency shift over time; furthermore, individual channels can drift as well, and both effects

can be highly detrimental in terms of QoT. In the context of this work, we consider gradual time-

varying device degradations on OA and add/drop (A/D) WSSs in the ROADMs. Specifically, we

consider that soft-failures can be explained by one of the following events in the modelling

parameters: a) NF increase; b) maximum optical output power (P-max) decrease; and c) Optical

SNR (OSNR) degradation caused by frequency drifts of the WSSs due to temperature fluctuation.

Our proposed architecture for soft-failure analysis is illustrated in Figure 17.1. The Telemetry

manager stores a replica of the operational databases (DB) that are synchronized from the

network controller. In addition, it collects measurements from the telemetry agents and stores

them in the Telemetry DB. These measurements are used by MESARTHIM to: i) estimate those

modelling parameters related to optical devices (resources); ii) analyse the evolution of the

measured SNR and that of the modelling parameters to detect any degradation as soon as it

appears; and iii) determine the severity of the degradation based on the foreseen impact on the

performance of the lightpaths.

Figure 17.1 also sketches the MESARTHIM methodology implemented in the telemetry system.

Specifically, the following building blocks can be identified: (1) the Surveillance block that

analyses the SNR measurements and the value of modelling parameters to detect any

meaningful degradation (e.g., by threshold crossing); (2) the Localization block that localizes the

soft-failure; (3) the Find Modelling Configuration block that finds the most likely value of the

modeling parameters of a given resource, so it results into SNR values of the lightpaths being

supported by such resources similar to those that have been actually measured; (4) the soft-

failure Identification block that, assuming a resource has been localized as the source of the soft-

failure, finds what is the modeling parameter responsible for such failure; and (5) the Severity

 D4.2 GA Number 101016663

156

Estimation block that estimates whether and when the soft-failure will degenerate into a hard-

failure. In addition, two internal repositories are used: i) the Device Modeling Config DB with the

evolution of the value of modeling parameters along time for every resource; and ii) the Network

Diagnosis DB that stores historical data for analysis purposes. The MESARTHIM manager

coordinates those blocks to achieve intelligent QoT analysis, as well as manages the interface

with the QoT tool.

Figure 17.1: Mesarthim architecture and its relationship with the Telemetry System

17.2 FUNCTIONAL VALIDATION

The following tests have been carried out to validate Mesarthim:

• Verify that MESARTHIM gets the route of the right lightpath from the LSP DB

• Verify that MESARTHIM gets the right samples from the telemetry DB

• Verify that MESARTHIM is able to find the right configuration of parameters for different

lightpaths.

 D4.2 GA Number 101016663

157

17.3 COMPONENT INTEGRATION

MESARTHIM runs as part of the telemetry system, and it access:

• the telemetry measurements DB to analyse constellation samples.

• the Operational DB to get the route of the lightpaths.

• an external QoT tool

The results of the analysis are stored in an internal DB.

17.4 ROADMAP

OCATA has been already integrated with the telemetry system.

17.5 COMPONENT KPIS

KPI Definition Methodology Results

Estimate the
most likely
modelling
configuration

Relative average
error of the
modelling
parameters
estimation < 8%.

Test experimentally
on a lightpath
system with several
spans. Produce
degradations
originated by optical
filtering and fibre
attenuation.

At each step, the module was
able to explain the increment
in the SNR of the lightpath by
a reduction in the bandwidth
in the related WSS or the NF
of the OA.
R2 > 0.986

Anticipation
of soft failures

> 15% through the
estimation of
modelling
parameters w.r.t.
SNR analysis.

Produce
degradations for
which the mag-
nitude gradually in-
creases with time

P-max degradation
anticipated 15%, NF
degradation 45% and WSS
degradation 27%

Severity
estimation

Severity estimation
anticipation > 40%

Produce
degradations for
which the mag-
nitude gradually in-
crease with time

P-max estimation 42.8%, NF
62.8% and WSS 49.6%

 D4.2 GA Number 101016663

158

18 OCATA - DIGITAL TWIN FOR THE OPTICAL TIME DOMAIN

OCATA is a deep learning-based digital twin for the optical time domain that is based on the

concatenation of deep neural networks (DNN) modelling optical links and nodes, which

facilitates representing lightpaths. The DNNs model linear and nonlinear noise, as well as optical

filtering. Additional DNN-based models extract useful lightpath metrics, such as lightpath length,

number of optical links and nonlinear fibre parameters. OCATA exhibits low complexity, thus

making it ideal for real-time applications.

18.1 WORKFLOW AND INTERFACES

Figure 18.1 overviews the considered network architecture and will be used for describing the

main workflow; for the sake of simplicity, only the directly involved elements, like a lightpath, a

node controller and a sandbox are detailed, whereas other components have been omitted to

better highlight the key concepts involved in this work. Lightpath i is considered as the entity

under analysis, which is represented as a sequence of optical components (Tx, ROADMs, links,

and Rx) supporting that lightpath.

Figure 18.1: OCATA Reference Network Architecture

Figure 18.2 details the internal architecture of the sandbox domain and node agents. At set-up

time, the SDN controller solves the Routing, Spectrum, and Transponder Assignment before

configuring the involved devices to establish the lightpath. Then, after the lightpath is

provisioned, the sandbox domain receives the lightpath’s configuration from the SDN controller

(labelled 1 in Figure 18.1), including its route on the optical network and some metrics. This

configuration is used in the sandbox domain to set up an accurate representation of that

lightpath to be set in the Rx agent (2). Such representation is defined as a sequence of pre-

trained DNN-based models that emulate the behaviour of each individual optical component

that the optical signal traverses. The role of the models is different depending on the physical

element they characterize (Figure 18.2 (a)). For instance, the model for the Tx characterizes the

output signal according to its specifications, whereas the models for intermediate elements

(ROADMs and fibre links) propagate forward a set of features related to the signal’s

constellation. Specifically, intermediate components introduce distortion on the constellation

as a result of LI and NLI noise. Finally, the Rx model receives the constellation features and

 D4.2 GA Number 101016663

159

performs additional actions before returning the output of the model. Additionally, any relevant

change affecting the lightpath during its lifetime, e.g., path rerouting, needs to be notified to

the sandbox, so as to adapt the lightpath’s representation and avoid misleading diagnosis due

to mismatch between the physical lightpath and its models.

Figure 18.2: Details of sandbox (a) and node agent (b)

Both constellation and lightpath analysis require from models that characterize the monitored

lightpath. Thus, anomaly detection based on comparing observed features and expected ones

coming from lightpath’s models can be carried out at the Rx. Note that this scheme highly

reduces the amount of data to be sent to the centralized elements (3), as well as its

computational demand for real-time data analysis purposes. Once the lightpath is set-up and

the lightpath models are set in the Rx agent, they are used for analysis. With a predefined

frequency, e.g., updated every 1s, the Rx samples the received constellation and gathers n IQ

symbols. The sample is then processed by the constellation analysis block in the Rx agent (Figure

18.2 (b)). The aim of this block is to extract a set of relevant constellation features that facilitates

posterior analysis, as well as compressing constellation data to be used for multiple purposes,

such as model training. These features are obtained by means of both supervised and

unsupervised statistics and ML-based techniques. Next, the lightpath analysis block processes

the features extracted from the received constellation and analyses key lightpath’s

configuration metrics, such as length and/or power configuration. The result of this analysis

produces a diagnostic report highlighting, e.g., whether some of the metrics does not follow the

expected behaviour. The diagnostic report is processed by the manager block that implements

a set of rules and generates notifications to the SDN controller depending on the diagnosis (4).

18.2 FUNCTIONAL VALIDATION

The following tests have been carried out to validate OCATA:

 D4.2 GA Number 101016663

160

• Verify that OCATA gets the route of the right lightpath from the LSP DB

• Verify that OCATA gets the right constellation samples from the telemetry DB

• Verify that OCATA determines the lightpath length and compares to that stored in the

LSP DB.

18.3 COMPONENT INTEGRATION

OCATA components run inside the telemetry system and access: i) The telemetry measurements

DB for model training purposes; ii) The LSP DB to get the route of the lightpaths and iii) The

samples in the node agent from transponder data sources. The results of the analysis are stored

in an internal DB.

It is expected to perform integration with the SDN controllers during the Year 3 of the project,

to evaluate its applicability in a set of use cases.

18.4 ROADMAP

OCATA has been already integrated with the telemetry system. A control loop integrating the

telemetry system, with OCATA and the SDN controller is to be defined by the end of the second

year of the project.

18.5 COMPONENT KPIS
KPI Definition Methodology Results

Lightpath

modelling

error

Error between the

optical constellations

generated with OCATA

with respect to real ones

for the same lightpath

configuration.

Test for different

lightpath

configurations, i.e.,

number of hops and

total distance.

We observed negligible µ

prediction errors (max error < 2%)

independently of the link length. In

contrast, σ max error is around

30% for low σ values although

decreases when path length

increases, becoming under 15%,

which is, in general, a good enough

performance to validate the

OCATA models.

Running time Reduction of running

time > 2 orders of

magnitude with respect

to Split-Step Fourier

Method (SSFM)

simulation

Test for different

lightpath

configurations, i.e.,

number of hops and

total distance.

Measure the time

needed to generate

optical constellations

(2048 symbols)

The experiments were performed

on an Intel Core i5 CPU @ 2.67GHz

computer with 8 GB RAM and

running Windows 10 64-bit. The

results show much better

scalability of OCATA, which runs

over 3 orders of magnitude faster

than SSFM. In addition, the

running time is only dependent on

the number of hops and not on the

distance as in SSFM.

 D4.2 GA Number 101016663

161

19 CONCLUSIONS

This deliverable reflects the work done in WP4 during the second year of the project. A

significant effort has been addressed to design the interfaces and protocols in order to enable

the different components of the control plane to interwork. Selected interface functionality has

been implemented and validated, and the different components are available for major

integrations in the scope of WP5.

All tasks have contributed to the deliverable. The focus of T4.1 is on the implementation of SDN-

based technologies and solutions to operate on packet-optical nodes based on SONiC and using

coherent pluggable modules. Experimental activities have been also performed on data plane

devices running SONiC to understand traditional protocol features and configurations. Task 4.2

deals with the design, development and validation of a generalized orchestration and control

plane system for the B5G-OPEN multiband optical networks infrastructure, able to deploy and

to manage the lifecycle of services. Developments are consolidated. These include SDN control

for multiband optical networks with externalized physical layer impairment validation and the

ONOS SDN controller has preliminary support for optical amplifiers, multi-band, flexible grid,

ROADM intents and interfacing toward TAPI module and interfaces have been properly defined

and implemented.

Finally, in Task AI Empowered Network Operating System for Autonomous and Zero-Touch

Networking, the hierarchical and distributed telemetry system has been demonstrated, as well

as algorithms for data processing, using sources of realistic data have been identified and now

are available for testing different algorithms. The optical time domain digital twin (OCATA) has

been tested using available experimental data. The digital twin allows the generation of

expected optical signals after crossing optical devices, which allows modelling lightpaths and

OCATA models are being used for knowledge sharing.

 D4.2 GA Number 101016663

162

20 REFERENCES

[CMIS] “CMIS” [Online]. Retrieved April 27, 2022, https://www.oiforum.com/wp-content/uploads/OIF-
CMIS-05.2.pdf

[ENP] “e-Lighthouse Network Planner, from https://e-lighthouse.com/products/networkplanner

[EuCNC] B5G-OPEN, EuCNC Demo, June, 2023, Gothenburg, Sweden

[GioDemo2
3]

A. Giorgetti, A. Sgambelluri, F. Cugini, E. Kosmatos, A. Stavdas, J. M. Martinez-Caro, P. Pavon, O.
Gonzalez De Dios, R. Morro, L. Nadal, R. Casellas "Modular Control Plane Implementation for
Disaggregated Optical Transport Networks with Multi-band Support", ECOC2023

[Gon22] O. Gonzalez de Dios et al, "MANTRA Whitepaper. IPoWDM convergent SDN architecture -
Motivation, technical definition & challenges", Telecom Infra Project, August 2022, [Online]
https://cdn.brandfolder.io/D8DI15S7/at/n85t9h48bqtkhm9k7tqbs9fv/TIP_OOPT_MANTRA_IP_
over_DWDM_Whitepaper_-_Final_Version3.pdf

[GRPC22] gRPC Network Management Interface (gNMI) [online], Retrieved October 5, 2022, from
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

[K8s] Kubernetes [Online]. Retrieved October 5, 2022, from https://kubernetes.io/docs/home/

[K8sAPI] Kubernetes API [Online]. Retrieved October 13, 2022, from
https://kubernetes.io/docs/reference/kubernetes-api/

[KAFKA] [Online] https://kafka.apache.org/

[Metro-
Haul]

Metro-Haul "Definition of Use Cases, Service Requirements and KPIs", Project Deliverable D2.1,
February 2018

[MUST] MUST Optical SDN Controller NBI Technical Requirements Document TIP OOPT PG - Version: 1.1
[Online] Retrieved October 5, 2022 from
https://cdn.brandfolder.io/D8DI15S7/at/sp6tgqcpjp8rgsshf8pvmwpg/TIP_OOPT_MUST-Optical-
SDN-Controller-NBI-Technical-Requirements-v11_FINAL_GREEN_ACCESS.pdf

[NSv16] "Framework for IETF Network Slices - draft-ietf-teas-ietf-network-slices" [Online]. Retrieved
December 16, 2022, from https://datatracker.ietf.org/doc/draft-ietf-teas-ietf-network-slices/

[OCATA] M. Ruiz, D. Sequeira, and L. Velasco, "Deep Learning -based Real-Time Analysis of Lightpath
Optical Constellations [Invited]," IEEE/OPTICA Journal of Optical Communications and
Networking (JOCN), vol. 14, pp. C70-C81, 2022.

[Ofc23] Pol González, Ramon Casellas, Jose Pedreño-Manresa, Fabien Boitier, Behnam Shariati,
Johannes K. Fischer, Marc Ruiz, Jaume Comellas, and Luis Velasco, "Distributed Architecture
Supporting Intelligent Optical Measurement Aggregation and Streaming Event Telemetry",
OFC2023

[OFCDemo] Pol González, Ramon Casellas, Jose Pedreño-Manresa, Fabien Boitier, Behnam Shariati,
Johannes K. Fischer, Marc Ruiz, Jaume Comellas, and Luis Velasco, "Distributed Architecture
Supporting Intelligent Optical Measurement Aggregation and Streaming Event Telemetry",
OFC2023

[OIF] “OIF” [Online] https://www.oiforum.com/

[ONF] Open Networking Foundation [Online]. Retrieved October 5, 2022, from
https://opennetworking.org/

[ONL] "Open Network Linux" [Online] http://opennetlinux.org/

[ONOS] "ONOS" [Online], https://opennetworking.org/onos/,
https://github.com/opennetworkinglab/onos

[ONOSREST
]

"ONOS REST APIs" [Online]
https://wiki.onosproject.org/display/ONOS/Appendix+B%3A+REST+API

[OpenConfi
g]

OpenConfig, "OpenConfig web site," [Online]. Available: http://www.openconfig.net. GitHub:
https://github.com/openconfig.

[OpenROA
DM]

OpenROADM [Online], http://openroadm.org/

https://e-lighthouse.com/products/networkplanner

 D4.2 GA Number 101016663

163

[P4] “P4” [Online]. Retrieved October 5, 2022, https://p4.org/

[Pav15} P. Pavon-Marino and J. L. Izquierdo-Zaragoza, “Net2plan: An open source network
planning tool for bridging the gap between academia and industry,” IEEE Netw, vol. 29,
no. 5, pp. 90–96, Sep. 2015, doi: 10.1109/MNET.2015.7293311.

[RFC8345] A. Clemm et al, "A YANG Data Model for Network topologies",
https://datatracker.ietf.org/doc/html/rfc8345

[SONIC] "SONiC" [Online] https://sonic-net.github.io/SONiC/

[TAPI2.1.3] Transport API 2.1.3 [Online], Retrieved 15 december at
https://github.com/OpenNetworkingFoundation/TAPI/releases/tag/v2.1.3

[TR-547] TAPI Reference Implementation Agreement TR-547 [Online] https://opennetworking.org/wp-
content/uploads/2021/12/TR-547-TAPI_ReferenceImplementationAgreement_v1.1.pdf

