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EXECUTIVE SUMMARY 
This deliverable reports the high-level description of the software and sub-components 
implemented for B5G-OPEN. This is presented in two parts, a summary of the key elements of 
the architecture and tables for the sub-components, showing their status, availability and other 
information. 

Specifically, the document summarizes the Infrastructure Control and Service Management 
platform architecture implemented in the B5G-OPEN Control, Orchestration and Telemetry 
System (referred to as the control plane, for short). The key aspects of the architecture are: 

 Multi-Band operation: Provision services using available bands out of the O-, E-, S-, C-, 
L-band in optical fibres. 

 Optical continuum: Allow optical slicing based on service requirements and crossing 
network segments (i.e. access, metro, core, etc.) 

 Integrated access: Operate and control service regardless of the access technology 
(Mobile, Fixed, WiFi, LiFi) 

 E2E network orchestration: Operate service and network operations from the Access 
Point to the Cloud node, which may include monitoring and AI/ML 

 Autonomous operation: Based on Intent-based and zero-touch networking paradigms, 
autonomous operation is built using closed-control loops at various levels, from device 
to network. 

The major parts of the architecture include: service orchestration and planning, packet optical-
integration systems, telemetry and intent-based networking. As presented in D4.1, the main 
control plane innovations are: 

- [multiband control] Control of optical multi-band network, this means being able to 
exploit the multiband capabilities of optical devices such as transmission or switching.  

- [transparent multi-domain, domain-less] The ability to setup connections in a 
transparent manner, across multiple domains and network segments.  

- [Packet/optical integration] Moving forward from current hierarchical architectures for 
the SDN control plane of the control plane that consider the IP/MPLS layer largely 
decoupled from the control plane of the optical layer 

- [physical layer impairments, PLI] Accounting for PLI is critical to efficiently plan and 
operate optical networks and high data rates, with increasing non-linear effects.  

- [telemetry] The scope of the SDN extends to optical monitoring and telemetry, a key 
enabler for advanced functions such as autonomous/autonomic networking via 
hierarchical and coordinated closed loops. 

- [external planning tools] Planning tools, including QoT estimators or path computation 
and validation systems need efficient access (in terms of retrieval, storage and 
processing) to collected and managed data.  

- [network automation] Aspects related to automation, zero touch networking and Intent 
Based Networking (IBN) are developed in the areas of service deployment, network 
planning and overall network operation.  

The interfaces for such a modular architecture, which must rely on standard and open interface 
definitions between the control plane functions and towards the devices. Those were presented 
in D4.2 together with components required for the service orchestration and infrastructure 
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control system. Similarly, the generic telemetry platform enabling straightforward adaptations 
of devices or systems as data sources was defined.  

The presentation of this work is concluded in the second part of this document, where the final 
status of each component is described. This is summarized in the following table that provides 
the list of components that have been implemented and the key performance indicators for 
each one. 

Component Partner Purpose 
B5G-ONP ELIG The B5G-OPEN Optical Network Planner (B5G-ONP) component 

orchestrates both IT and network resources. Within the B5G-OPEN 
project, the B5G-ONP serves as the hub and provides design, 
optimization, and planning tools to deploying, managing, and 
configuring services and resources. 
 
The KPIs measured are: 
1. Topology Discovery Time, the time elapsed from the moment a 

network operator sends the finding command until all layer of 
the topology is imported into B5G-ONP, with target values from 
less than 5 seconds up to 30 seconds. 
The average values measured were: 
- TAPI Optical Network Orchestrator: 300 ms 
- IP SDN Controller: 4 seconds 
- Kubernetes Cluster: 2 seconds 

2. Connectivity service provisioning latency, the time to provision 
connectivity service starting when B5G-ONP receives a request 
for it and ending when the service is properly established, with 
target values of less than 10 minutes with hardware and less 
than 1 minute with emulation. 
The following mean baseline values were recorded: 
- DSR provisioning: 237 ms 
- OLS path provisioning: 110 ms 
- IP BGP adjacency provisioning: 4 seconds 
- Reconfiguring OLS path provisioning: 200-300 ms 
- Kubernetes Deployment: 150 ms 
- Kubernetes Service: 100 ms 

3. Optical Path computation element latency, the time it takes to 
perform a path and is directly proportional to the number of 
network elements involved in the path computation and the 
traffic load on the network.  
Values measured in the project experiments:  
- PCE: average of 200 ms 
- Multiband-PCE: average of 600 ms, depending directly on 

the time consumed by the MB-PCE when requesting the 
optical context. 

 
TAPI-enabled 
Optical 
Network 
Orchestrator 
with 

CTTC The TAPI-enabled Optical Network Orchestrator is responsible for: 
i) providing a uniform, open and standard view and interface to the 
higher levels and components; ii) Composing a complete Context to 
be consumed by B5G-OPEN network planner and additional 
consumers combining information retrieved from subsystems and 
sub-controllers;  iii) Enabling a single entry point for provisioning 
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externalized 
Path 
Computation 

DSR and Photonic Media services, including externalized path 
computation and iv) providing an event telemetry data source that 
reports events that happen asynchronously in the network. 
 
The KPIs measured are: 
1. Service Provisioning Overhead – In terms of messages, message 

size, encoding, etc. This includes a characterization of the 
protocol overhead (e.g., HTTP, RESTCONF, etc). 
Values measured in an experiment: 
- Discovery context: 931 ms 
- Single-domain provision: 309 ms 
- Multi-domain provision: 515 ms 

2. Path Computation Latency – measured as the time it takes to 
perform a path computation with a dedicated PCE. This is to be 
evaluated.  
In different experiments the following values were obtained: 
- PCE latency: 0.5 - 0.6 seconds 
- MB-PCE: PCE latency :1.8 - 3.2 seconds 

 
Multi-Band 
Path 
Computation 
Engine (MB-
PCE) 

OLC-E The Multi-Band Path Computation Engine (MB-PCE) is based on a 
multi-band routing engine which ensures that: i) routing is 
implemented by means of an efficient spectrum and modulation-
format assignment; and ii) the impact of physical layer effects over 
the selected optical paths is estimated and the results are 
benchmarked against QoT target values (BER, OSNIR, OSNR, etc). 
 
The KPIs measured are: 
1. Path Computation Latency, is the time it takes to MB-PCE to 

compute the path of a new service request, with a target value 
of < 40s. 
- Several scenarios were executed. The MB-PCE Path 

Computation Latency was measured to be in the range 
between 1.8 – 3.2 seconds 

 
2. TAPI Topology retrieval and parsing Latency, the time it takes 

for MB-PCE to retrieve and parse the optical network topology 
context, with a target value of < 20s. 
- Several scenarios were executed. The MB-PCE Topology 

retrieval and parsing Latency was measured to be in the 
range between 0.9 – 2.5 seconds 

 
ONOS Optical 
Controller 

CNIT The optical controller is based on the ONOS open-source project 
[ONOS] that, besides the control of optical devices, also provides a 
suitable environment for the control of packet devices (e.g., based 
on OpenFlow or P4Runtime protocols).  
The main roles of the optical controller in the B5G-OPEN project 
are: (i) retrieve device descriptions from data plane and abstract 
them toward the upper control layers; (ii) receive the service 
configuration requests by the upper control layers and translate 
such requests in a set of configuration messages to be forwarded to 
each involved device. 
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Set of component KPIs that have be measured during experimental 
demonstrations: 
1. Time required for network discovery: 

- Measured in the order of tens of seconds, always lower 
than one minute.  

2. Physical activation delay for an optical intent:  
- Measured in the order of one-two minutes mostly 

depending on the utilized transceivers. 
3. Time elapsed in the controller: 

- Measured in the order of one second. 
4. Time elapsed for configuration of devices: 

- Devices typically confirm the reception of a configuration 
message in the order of few hundreds of milliseconds.  

 
Access 
Controller / 
PON 
Controller 

OLC-E The Access Controller is responsible for: a) monitoring the PON 
network and receiving any requests for PON reconfiguration; b) 
translating these requests into high level traffic requests that will 
be reported to the B5G-ONP App; c) executing the appropriate 
actions in the PON Controller in order to support the new requests. 
In addition, the Access Controller will communicate with the LiFi 
Controller for retrieving any connection/traffic requests 
 
The KPIs measured are: 
1. PON Reconfiguration Latency, the time it takes for the actual 

reconfiguration of the PON network, with a target value of < 
20s. 
- The latency for retrieving the configuration and status 

information from different elements in the PON network 
was measured between 1.2 to 1.8 seconds 

- In addition, the PON Reconfiguration Latency (SLA update 
and application) was measured between 450 - 600 ms 

 
2. Access Controller Latencies, the time it takes to Access 

Controller to execute different functionalities. 
Here are the values reported in the Berlin Demo (WP5): 
- Authentication: 234 - 790 ms 
- PON SLA creation: 187 - 781 ms 
- ONU SLA configuration: 316 - 529 ms 
- Logout: 71 - 514 ms 
- Send access traffic descriptor to B5G-ONP app: 51 - 79 ms 
In addition, the response from B5G-ONP app was measured 
between 53 ms and 7.26 seconds (for different B5G-ONP app 
configurations). 

 
LiFi Controller PLF The LiFi controller serves as the central component responsible for 

managing LiFi APs in the network. It is strategically positioned 
between the PON controller and the LiFi AP. This specific positioning 
ensures seamless communication and enhanced coordination 
between the optical network layer and the wireless LiFi 
communication layer 
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The KPIs measured are: 
1. Device Management Accuracy, assessing how accurately the 

controller works and manages device states. 
-  No failure was observed in normal working conditions. 

2. Scalability, the controller's ability to scale by managing an 
increasing number of LiFi devices without performance 
degradation.  
- It has been tested for up to three devices in lab conditions. 

3. Latency, time for the controller responds to user’s request. 
-  Measured between 10 and 70 ms (excluding any NETCONF 

sessions accessing the LiFi agent). 
LiFi agent PLF The LiFi Agent acts as a central hub in the architecture of the LiFi 

AP. With the advancement of NETCONF capabilities, the agent 
provides a seamless way for the AP to interact with other 
components, offering a structured interface for configurations and 
management 
 
The KPIs measured are: 
1. Device Recognition Success Rate, how often the agent 

successfully recognizes and interfaces with devices. 
-  No failure was observed on recognising the LiFi APs. 

2. Configuration Accuracy, how accurately the agent applies the 
configuration changes to the devices. 
- No failure observed. 

3. Stability, how reliable and stable the agent is with multiple LiFi 
AP devices. 
- Has been tested with up to three LiFi APs in lab conditions. 

4. Latency for accessing the LiFi AP 
- Measured between 5 ms and 20 ms, 
- The latency for having a NETCONF session is typically 30 and 

71 ms.  
- With the light communication path partially blocked, 150 

ms has been observed.  
 

OpenROADM 
agent 

TIM The OpenROADM agent is an implementation of a NETCONF server 
controlling optical network elements using OpenROADM device 
models 
 
The KPIs measured are: 
1. Start-up delay, for different datastore sizes (4 to 9 degrees). 

- Measured between 437 and 477 ms. 
2. Discovery Latency, the time required by ONOS SDN controller 

to discover the ROADM and its port capabilities. 
- Measured between 30.2 and 43.7 ms 

3. Connection Latency, the time required for the configuration 
change to create a cross-connection between two roadm 
degrees.  
- Measured between 172 ms and 2.5 seconds. 
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OpenConfig 
agent 

CTTC  
 
CNIT 

OpenConfig agent is an implementation of an SDN agent using 
NETCONF/YANG with the OpenConfig data models. It implements a 
subset of the data models, namely the OpenConfig platform and 
optical transport as well as some extensions devised in the context 
of B5G-OPEN to report details about the transceiver operational 
mode 
 
The KPIs measured are: 
1. Instantiation delay and footprint: when the agent is running as 

a containerized application, characterize aspects related to 
instantiation of the agent, as well as aspects related to memory 
usage. 
- Measured from 17 ms to 1.230 seconds. The variability is 

due to retrieving operational data from the devices. 
2. Discovery latency: measure the time and the control plane 

overhead (in terms of bytes, and throughput) it takes for an SDN 
controller to discover the components of the transceiver upon 
a NETCONF get operation. 
- The discovery latency was measured as 475 ms 

3. Operational Mode characterization: measure the time and the 
control plane overhead (in terms of bytes, and throughput) it 
takes for an SDN controller to discover the details of a given 
operational mode 
- The measured value was 300ms 

4. Transaction delay: the time it takes to send a configuration 
change, and this is reflected in the datastore. The focus shall be 
to change an Optical channel frequency, power and operational 
model. This KPI will be evaluated with and without hardware 
- A total setup time of around 300s is needed to perform all 

the required OpenConfig operations to set up the 
connection. 

 
SONiC based 
packet optical 
node 

CNIT The Software for Open Networking in the Cloud, i.e., SONiC, [SONIC] 
is considered as the Network Operating System (NOS) to be 
deployed on packet-optical IPoWDM nodes operated in 
metro/aggregation networks. Within the B5G-OPEN project SONiC 
has been extended with several components provided in the form 
of docker containers. 
 
The KPIs measured are: 
1. Time required at the data layer for enforcing a modification of 

the central frequency of the optical coherent transceivers, has 
measured using ZR and ZR+ transceivers: 
- Control plane time from 9.38 to 10.37 seconds 
- ZR transceiver output time from 67,34 to 71.06 seconds 
- ZR+ transceiver output time from 13.2 to 19.1 seconds 

2. The spectrum width required to preserve the quality of 
transmission of a 400 Gbps channel with 16-QAM modulation 
format: 
- 68 GHz required for no QoT degradation 
- 60 GHz with QoT degradation. 
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AI/ML models 
for PSD and 
Power 
Management 

NOKIA Machine learning application towards augmented optical networks 
and is called “Automatic power correction” 
 
The KPIs measured are: 
1. Gain/loss of performance: The difference between the signal-

to-noise ratio before and after using this AI/ML component.  
- The SNR gain after correction is up to 0.5 dB for 1dB power 

correction and 1dB for 2.5dB power correction. 
- The maximum loss of performance was 0.15dB 

2. Scalability in terms of number of input points: The number of 
points required for the optical PSD to get a given accuracy  
- For 20 PSD points, the error standard deviation is 1.67dB 
- For 100 PSD points, the error standard deviation is 1dB  
- For 315 PSD points, the error standard deviation to 0.41 dB.  

 
Telemetry 
System  

UPC B5G/OPEN distributed telemetry system integrates measurements 
and event data collection and supports intelligent data aggregation 
nearby data collection, so agents receive and analyse 
measurements before sending to a centralized manager. 
 
The KPIs measured are: 
1. Optical Constellation Data Compression with Autoencoders, a 

compression technique applied to optical constellation 
measurements. 
- Achieved 625:1 compression with reconstruction error < 

2% 
2. Spectrum Dimensionality Reduction with Feature Extraction, a 

technique applied to spectrum measurements. 
- The compression rate achieved was 7.5:1 

 
FlexTelemetry 
Agent 

Adtran The FlexTelemetry Agent periodically requests and collects 
performance measurements from optical transport network 
devices. It utilizes NETCONF and supports both open (OpenConfig) 
and proprietary data models to ensure comprehensive data 
collection. It features a modular plugin system that provides a 
Northbound Interface (NBI) capable of delivering stable telemetry 
streams to various mediums. This modular approach allows Flex-
Telemetry to seamlessly integrate with diverse data storage and 
processing systems, facilitating efficient, scalable access to 
performance data across different platforms. 
 

Mesarthim – 
Failure 
management 
Using a SNR 
Digital Twin  

UPC MESARTHIM compares the QoT measured in the transponders with 
the one estimated using a QoT tool. Deviations can be explained by 
changes in the value of input parameters of the QoT model 
representing the optical devices, like noise figure in optical 
amplifiers and reduced Optical Signal to Noise Ratio in the 
Wavelength Selective Switches. By applying reverse engineering, 
MESARTHIM estimates the value of those modelling parameters as 
a function of the observed QoT of the lightpaths 
 
The KPIs measured are: 
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1. Estimate the most likely modelling configuration, with relative 
average error of the modelling parameters estimation < 8%. 
- At each step, the module was able to explain the increment 

in the SNR of the lightpath by a reduction in the bandwidth 
in the related WSS or the NF of the OA. R2 > 0.986 

2. Anticipation of soft failures, higher than 15% through the 
estimation of modelling parameters w.r.t. SNR analysis. 
- P-max degradation anticipated 15% 
- NF degradation anticipated 45% 
- WSS degradation anticipation 27% 

3. Severity estimation, anticipating > 40% 
- P-max estimation 42.8%, 
- NF estimation 62.8% 
- WSS estimation 49.6% 

 
Ocata - Digital 
Twin for the 
Optical Time 
Domain 

UPC OCATA is a deep learning-based digital twin for the optical time 
domain that is based on the concatenation of deep neural networks 
(DNN) modelling optical links and nodes, which facilitates 
representing lightpaths. The DNNs model linear and nonlinear 
noise, as well as optical filtering 
 
The KPIs measured are: 
1. Lightpath modelling error, comparing the optical constellations 

generated with OCATA with real ones for the same lightpath. 
- Distribution mean error under 2% independently of the link 

length. 
- Distribution standard deviation error under 15% for longer 

paths. 
- The reconstruction of the features of the non-selected 

constellation points showed an accuracy of 97%. 
- Average error for lightpath estimation < 5% for lightpaths 

over 500Km 
- Average error for estimation of number of hops of the 

lightpath < 5%. 
2. Reduction of running time, with a target value of > 2 orders of 

magnitude with respect to Split-Step Fourier Method (SSFM) 
simulation 
- The running time is over 3 orders of magnitude faster than 

SSFM. 
- The running time depends only on the number of hops and 

not on the distance (as in SSFM). 
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1 INTRODUCTION 
This deliverable reports the high-level description of the software and sub-components 
implemented for B5G-OPEN. This is presented in two parts, a summary of the key elements 
of the architecture and tables for the sub-components, showing their status, availability and 
other information. 

More formally, the document summarizes the Infrastructure Control and Service 
Management platform architecture implemented in the B5G-OPEN Control, Orchestration 
and Telemetry System (referred to as the control plane, for short). The key aspects of the 
architecture are: 

 Multi-Band operation: Provision services using available bands out of the O-, E-, S-, 
C-, L-band in optical fibres. 

 Optical continuum: Allow optical slicing based on service requirements and crossing 
network segments (i.e. access, metro, core, etc.) 

 Integrated access: Operate and control service regardless of the access technology 
(Mobile, Fixed, WiFi, LiFi) 

 E2E network orchestration: Operate service and network operations from the Access 
Point to the Cloud node, which may include monitoring and AI/ML 

 Autonomous operation: Based on Intent-based and zero-touch networking 
paradigms, autonomous operation is built using closed-control loops at various 
levels, from device to network. 

The major parts of the architecture include: service orchestration and planning, packet 
optical-integration systems, telemetry and intent-based networking. As presented in D4.1, 
the main control plane innovations are: 

- [multiband control] Control of optical multi-band network, this means being able to 
exploit the multiband capabilities of optical devices such as transmission 
(transceivers) or switching (multi-band ROADMs).  

- [transparent multi-domain, domain-less] The ability to set up connections in a 
transparent manner, across multiple domains and network segments. This is 
exemplified in the “multi-OLS” scenario, in which different optical line systems are 
interconnected without a O/E/O conversion. There is a systematic need to extend 
SDN principles to networks composed of multiple domains and technological layers, 
significantly more complex than single domain networks due to the lack of detailed 
and global topology visibility. The division into domains is driven by factors such as 
scalability limitations, confidentiality requirements, or interoperability issues, and 
the conception of scalable, efficient reliable, and trustable systems for the 
provisioning of end-to-end services.  

- [Packet/optical integration] The evolution from discrete optics towards pluggable 
interfaces is also challenging the design of the control plane which, to a large extent, 
has considered the control plane of the IP/MPLS layer largely decoupled from the 
control plane of the optical layer. Current architectures for the SDN control plane of 
the transport network consider the scope of the control considering discrete 
transceivers and the tunability of the transceiver was directly under the control of 
the optical SDN controller and multi-layer networking was commonly accomplished 
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typically with a hierarchical arrangement of controllers (a packet controller and an 
optical controller under the orchestration of a parent controller). This is addressed 
in B5G-OPEN, considering multiple options including exclusive or concurrent control. 

- [physical layer impairments, PLI] accounting for PLI is critical to efficiently plan and 
operate optical networks and high data rates, with increasing non-linear effects. 
When considering the extension to wide-band, such parameters can be specific to 
certain frequency bands and one can no longer assume uniform channel behaviour. 
Until recently, there has been a lack of common, standard, and open data models for 
physical impairments, a domain where it has been difficult to reach a wide 
consensus. Current systems need to interoperate with heterogeneous monitoring 
info sources and proprietary and costly simulation tools are difficult to interop or 
integrate. The new opportunities associated to the development of planning, 
validation, and path computation tools such as the Open-Source GNPy[Fer20] or 
Net2Plan[Pav15] has once again shown the importance and role of standard and 
open interfaces. The challenge is then two-fold: how to integrate such third-party, 
externalized tools and from a modelling perspective, how to extend current network 
and service models to account for PLI. This includes a finer characterization of 
transceivers operational modes, which characterize a given transceiver’s different 
transmission modes including aspects such as bit/baud rate, FEC or modulation 
formats, as is being done in OpenConfig manifests, IETF operational mode 
characterization or TAPI transceiver profiles. Additionally, further work is required to 
model optical fibers – including the selection of a relevant sent of parameters --, 
amplifier functions e.g., in terms of parameters such as wavelength dependent gain, 
operation mode, noise figure as well as network elements such as ROADMs. Finding 
the right abstraction level, where a given model can be applied to a multiplicity of 
devices from different providers is challenging.  

- [telemetry] The scope of the SDN no longer covers exclusively device / system 
control and configuration aspects but extends to optical monitoring and telemetry, 
a key enabled for advanced functions such as autonomous/autonomic networking 
via hierarchical and coordinated closed loops. Streaming Telemetry protocols and 
architectures such as gRPC/gNMI are increasingly being used to export telemetry 
data from devices, providing flexibility in the definition of streams, filtering, and use 
cases. Telemetry architecture is detailed in Section 2.6. 

- [external planning tools] Planning tools, including QoT estimators or path 
computation and validation systems need efficient access (in terms of retrieval, 
storage and processing) to collected and managed data. Algorithm inputs need to be 
modelled in an efficient and scalable way, defining dynamic workflows with 
controlled and minimized impact on service provisioning latency. Algorithmically, 
functional elements dedicated to generalized Routing and Spectrum Assignment 
(RSA) or function placement are needed and are expected to operate in hybrid off-
line/on-line modes, e.g., dynamically, used to compute/validate e.g., OTSi services 
over specific bands with satisfactory QoS/QoT. In this sense, further work is needed 
to have a unified short-term provisioning and long-term network-planning using a 
single software framework. Such systems need to scale in complexity. The fact that 
data is heterogenous and covers multiple application domains renders the 
development of placement algorithms of orchestrator schedulers that need to 
retrieve network information from multiple layers and domains extremely complex.  
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- [network automation] Aspects related to automation, zero touch networking and 
Intent Based Networking (IBN) are developed in the areas of service deployment, 
network planning and overall network operation. Outcomes related to automation 
in single domains and later cross-domain automation (across technology layers or 
network segments).  
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2 HIGH-LEVEL DESCRIPTION OF THE CONTROL PLANE 

2.1 B5G-OPEN CONTROL PLANE SERVICES  
The Figure 2-1 shows a simplified representation of the control plane architecture.  

 

Figure 2-1 Macroscopic B5G-OPEN architecture and Service instantiation interfaces. 

The following subsections summarize the targeted services, presenting a brief description 
and applicability statement. 

2.1.1 Point to Point Optical Connectivity  
The Point-to-Point Optical Connectivity service addresses point to point connection between 
optical ports, corresponding to, for example, the line ports of packet/optical devices or 
discrete transceivers (when the configuration remains at the OTSi layer) or corresponding to 
ROADM add/drop ports. 

2.1.2 Point to Point DSR Connectivity  
This service addresses Digital Signal Rate (DSR) provisioning between two stand-alone 
transceivers or whiteboxes (term that refers to a network element that uses a chassis and a 
node operating system, often provided by different vendors, and for which most of the 
components are open) with integrated transceivers. It is part of IP link provisioning between 
elements (packet/optical nodes) and relates to creating, dynamically and in real time, 
connectivity to support packet transmission between whiteboxes.  Given end transceivers, 
rate and applicable constraints, the control plane configures and activates the “line part” of 
the transceiver (modulation, spectrum). Note that the creation of a DSR connectivity service 
typically triggers the interaction with the optical SDN controller and OLS controller, including, 
eventually, the creation of OLS point to point connectivity (see above).  

2.1.3 Point to Multipoint connectivity  
This service addresses the provisioning of a point to multipoint connection from a hub to 
several leaves. The service is realised by means of OpenXR configuration of the transceivers 
and relies on a dedicated sub-controller. This OpenXR controller is under the control of the 
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B5G-OPEN orchestrator, and logically provides multiple point-to-point links between routers 
attached to the hub (root) and leaves of the system. 

2.1.4 IP link provisioning 
Related to the previous service, and given an existing DSR service, the B5G-OPEN 
orchestrator interacts with IP SDN controller to configure the transceivers as IP interfaces in 
the whitebox. The newly created DSR connectivity becomes a logical interface (e.g., serialXX, 
ethXX), and The DSR connectivity is seen by the device as a physical port with an associated 
logical interface (...) which can be used to forward packets (of any kind, not only IP, for 
example LLDP, IS-IS, etc). This is shown in Figure 2-2, and the relevant list of operations to 
perform can cover e.g., interface activation, IP address configuration, etc. 

 

Figure 2-2 IP link provisioning between the whiteboxes. 

 

Figure 2-3 multiple IP link provisioning between the whiteboxes using P2MP XR. 

2.1.5 Packet/IP Connectivity 
Generally speaking, IP connectivity relies on the existence of IP links between whiteboxes. 
When we consider packet or IP connectivity, we refer to configuring packet switching at the 
Packet/Optical nodes. This configuration can rely, typically, on IP forwarding or in more 
advanced SDN-based solutions, such as those based on P4. In this context, an SDN controller 
may either i) configure IGP/routing protocols (such as OSPF or BGP) or ii) provide flow 
configuration for flow switching, based on e.g., addresses, ports. 

For non-connection-oriented IP, (regular IP routing) given end IP routers (whiteboxes), rate, 
IP QoS, and constraints, it is responsibility of the B5G-OPEN Orchestration platform to check 
(via Dimensioning & analysis module) if there is enough IP capacity and take the decision of 
making the required IP link/DSR provisioning.  
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2.1.6 P2MP Access Connectivity  
The orchestrator is also responsible to ensure P2MP connectivity with the access segment. 
This involves the configuration of the PON controller and is detailed in Section 2.3 

2.1.7 B5G-OPEN Network Slice  
In this context, a B5G-OPEN slice is defined as a set of interconnected computing and storage 
functions, deployed within the B5G-OPEN infrastructure, and which involves the 
orchestration of heterogeneous computing, storage, and networking resources. 

2.1.8 Other services 

2.1.8.1 Telemetry services 
At any part of the control plane architecture, systems and devices may export telemetry 
services. Telemetry clients may connect and be updated with events, telemetry data etc. 

2.1.8.2 Optical Topology Services 
Clients MUST be able to retrieve the topology of the underlying optical network. This means 
being able to retrieve the set of links, nodes, and ports associated with the different layers 
and, notably, including additional information that may be useful for externalized path 
computation entities.   

2.1.8.3 Optical Path Computation Services 
Clients MUST be able to perform path computation on the underlying topology. This can be 
consumed internally or left for external clients.  

2.1.9 Telemetry and Intent Based Networking 
The domain telemetry collector architecture has also been defined. It involves a Telemetry 
Manager with its own repository as well as telemetry agents that sit on different elements, 
using the REDIS database. Intent Based Networking Applications implement Knowledge 
Sharing and rely on the services offered by the different functional elements. 

 

 

Figure 2-4 B5G-OPEN Control and Orchestration architecture 
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Finally, the B5G-OPEN architecture spans from the Access Point to the Cloud node, which 
might include monitoring and AI/ML. Based on Intent-based (IBN) and zero-touch networking 
paradigms, autonomous operation is built using closed-control loops at various levels, from 
device to network. Empowered by a distributed AI/ML-based engine providing data 
collection and intelligent aggregation, analysis, and acting on the network devices, 
autonomous operation enables coordinated decision-making across domains. This is shown 
in Figure 2-5. 

 

Figure 2-5 B5G-OPEN Intent Based Applications (IBN) and Knowledge-Sharing. 

2.2 OPTICAL NETWORK CONTROL  

2.2.1 TAPI-enabled Optical Network Orchestrator (TAPI NOrch) 
The TAPI-enabled Optical Network Orchestrator is a functional element of the architecture 
that is responsible for the following functions: 

- Providing a uniform, open and standard view and interface to the higher levels and 
components of the B5G-OPEN control, orchestration, and telemetry system. 

- Compose a complete Context to be consumed by B5G-OPEN network planner and 
additional consumers combining information retrieved from subsystems and sub-
controllers (Optical Controller, external databases, monitoring systems, etc). 

- Enable single entry point for provisioning DSR and Photonic Media services, including 
externalized path computation. 

- Provide an event telemetry data source that reports events that happen 
asynchronously in the network. 

2.2.2 Optical Controller 
The optical controller is based on ONOS SDN controller that provides a wide environment 
that is used to control and configure optical devices and transceiver equipped within 
packet/optical white boxes. In particular, the main roles of the optical controller are: (i) 
retrieve devices description from data plane and abstract them toward the upper control 
layers; (ii) receive the service configuration requests by the upper control layers and translate 
such requests in a set of configuration messages to be forwarded to each involved device. 

The 3.0 version of ONOS have been forked at the beginning of the project and augmented 
with several project specifics features published in a public repository. Some selected 
features have been also exported and merged into the main ONOS distribution. Work done 
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has been mostly oriented to enable the integration with other components of the B5G-OPEN 
control plane such as the T-API orchestrator (NBI), devices OpenConfig and OpenROADM 
agents, and to introduce the support of flexi-grid and multi-band in the controller’s core.  

The figure below illustrates the ONOS GUI deployed at the TIM premises for the flex-grid, 
multi-band experimental testbed, where both control plane and data plane B5G-OPEN 
components have been integrated and validated. In particular, the ONOS controller was used 
to control two network domains. The one illustrated in the figure includes O-BAND switches 
(implemented using TUE devices), C-BAND switches (implemented using commercial 
devices), and emulated multi-band filters. The testbed also included SONiC-based white-
boxes with coherent optical transceivers that were directly controlled by the network 
orchestrator. The two ONOS controllers (one per network domain) export the network 
topology to the T-API orchestrator and have demonstrated the ability to process connectivity 
requests (creation and deletion) from the T-API orchestrator, consistently configuring all 
involved data plane devices. This work has been published at ECOC 2024 [Mor24]. 

 

 

 

 

2.2.3 OLS Controller 
The ADVA OLS controller is based on the Ensemble Network Controller software solution and 
is offering a northbound ONF Transport-API (TAPI) towards the Optical Controller.  
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Figure 2-6 ADVA OLS Controller Northbound Interfaces 

The OLS controller is exposing the topology. The topology model provides the explicit 
multilayer topology that the Layer 2 to Layer 0 represents. This topology includes the OTS, 
OMS, and OCH. Based on ONF TAPI 2.1 models, the OLS controller supports a TAPI topology 
flat abstraction model that collapses all layers into a single multilayer topology. A single 
topology represents all network layers such as OCH, and Photonic Media, which include 
media channels, OMS, OTS and so on. This topology is modelled as a tapi- topology:topology 
object within the tapi-topology:topology-context/topology list.  

2.2.4 Optical Path Computation Element 
In B5G OPEN, TAPI has been chosen as the NBI for the optical network controllers (TAPI 
Optical Network Orchestrator), handling the provisioning and control of optical connections. 
The optical SDN controller may optionally use an external Path Computation Element, for 
assisting it in the path computation of the connections. 

In TAPI, the Optical Path Computation Element (OPCE) determines an end-to-end path 
between Service Interface Points (SIPs) and is developed as a TAPI-enabled component. The 
orchestrator sends to the OPCE a TAPI path-request. This module requests an abstract 
topology from the context manager, calculates the path and responses with TAPI path-reply 
after finding a path within that internal context. The interactions between the OPCE and the 
TAPI- Optical Network Orchestrator element is governed by the standardized Path-
Computation-Service interface and APIs, as defined in [Man21], and when needed, standard 
extensions may be proposed along the project. 

2.2.5 Multi-domain scenarios 
Of special interest for B5G-OPEN is the “multi-OLS scenario”, (see Figure 2-7) which is to be 
considered for use cases related to the provisioning of services across a muti-segment 
network in a transparent way. In the multi-OLS scenario, several domains are interconnected 
transparently (e.g. via optical links), connecting, for example a degree of a ROADM to a 
degree of a ROADM or add/drop to add/drop, as shown in the figure). Such scenarios shall 
be addressed with an arrangement of controllers and the key issue to research is how to 
retrieve the abstracted topological information to perform efficient path computation.  
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Figure 2-7 Control plane architecture for the multi-OLS scenario, showing a back to back add/drop-add/drop 
configuration. 

2.3 ACCESS NETWORKS CONTROL 
The B5G-OPEN control and orchestration software system will also support the control of 
access network segments in addition to the control and orchestration of packet and optical 
network segments. In this direction, B5G-OPEN will have the capability to control access 
networks including Passive Optical Networks (PONs) and LiFi networks.  

2.3.1 The Framework of TDM-PON Configuration and Control 
The B5G-OPEN TDM-PON infrastructure is realised using an XGS-PON OLT pluggable 
transceiver (e.g., TiBit pluggable) and a couple of pluggable ONUs (e.g., Tibit ONUs). The OLT 
is interfaced directly to a whitebox switch while the OLT is interconnected to the ONUs by 
means of splitters, forming up an ODN branch. The integration of these pluggables with the 
B5G-OPEN software platform is made feasible at three different levels (from higher to lower 
layer). These options lead to different alternatives for the implementation of TDM-PON's 
control-plane, presented in the next subsections.  

The selected alternative, the PON vendor provides the pluggable software and the PON 
controller software. The TDM-PON control-plane architecture and its integration to the B5G 
OPEN platform are illustrated in Figure 2-8.  Since the PON Controller is provided by the PON 
vendor, a Higher-Layer PON Controller is developed as part of the B5G-OPEN software 
platform, providing a slightly different functionality: 

 The information exchange is again based on the BBF/ITU YANG models. However, 
the SBI that communicates with the PON Controller is a software client that is 
developed based on OLT PON SDK. 

 A NETCONF/REST server at the Northbound Interface (NBI) which exposes a set of 
APIs that allow the B5G-ONP app to provision and configure the PONs. This API is 
using a simplified (subset) BBF/ITU YANG model which depend on the abstraction 
and transformation realised in the lower layer. 
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Figure 2-8 B5G-OPEN Control of PON through the PON Controller 

  

2.3.2 LIFI Control  
The LiFi access networks is provided by Access Points (APs), named LiFi-XC, provided by 
pureLiFi.    

 

Figure 2-9: LiFi-XC AP 

1) The LiFi control for B5G-OPEN supports a NETCONF interface, with a LiFi specific 
YANG model to configure a LiFi AP. The motivation behind NETCONF and YANG is 
that instead of having individual devices with functionalities, there is a need to have 
a network management system that manages the network at the service level. To 
integrate the LiFi access technology in the overall B5G-OPEN architecture, NETCONF 
and YANG add more functionalities in the network management. 
 

2) There is a telemetry adaptor within the LiFi AP for LiFi telemetry data collection and 
transmission.  
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Figure 2-10: Initial assumption for LiFi control 

2.4  ORCHESTRATION 

2.4.1 IT and network resources orchestration 
The orchestrations process consists of the coordination of both IT and network resources of 
the infrastructure, in an efficient and harmonized form, pursuing a global optimization of the 
infrastructure usage.  

The so-called slice is the key service requiring such a joint IT and network allocations. In B5G-
OPEN, we generalize the concept of slice as a set of IT requirements to be allocated in the IT 
infrastructure, together with a set of network requirements connecting them, to be allocated 
in the network infrastructure. In B5G-OPEN, the orchestration process is implemented in a 
collaborative form among three key groups of components: 

1. The IT resources, potentially distributed in one or more clusters, at different 
locations across the operators’ infrastructure, are handled by one or more IT 
orchestrator systems. 

2. The network resource, involving IP/MPLS and optical layers, are controllable via one 
or more SDN controllers. 

The coordination of IT and network resource allocations is handled by the B5G-ONP (Open 
Network Planner). The key functions of the ONP are providing tools for the design, 
optimization, and planning of services.  

2.4.2 B5G-ONP modules 
B5G-ONP consists of three main modules (see Figure 2-11):  

 Provisioning and discovery module. This module is intended to manage the 
provisioning and termination of different operator-level services, as the ones 
discussed in Section 3, that may involve It and/or network resources. Such functions 
are accessed via an open API designed along the project. However, a Graphical User 
Interface is prototyped to ease the interactions. 

 Dimensioning and analysis module. This module hosts different algorithmic 
resources, that realize the resource allocation decisions, in different use cases, 
covering both offline network dimensioning, and online resource allocations. These 
modules are designed to be accessed via an open API defined along the project, and 
also a prototyped GUI.  
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 Optical Path Computation Element. This module is specifically developed to be able 
to interact with the TAPI Optical Network Orchestrator, in order to act as an Optical 
Path Computation Element node, to which the TAPI Optical Network Orchestrator 
can delegate the optical path computations. 

 

Figure 2-11 Coordination of Kubernetes cluster from B5G-ONP 

2.5 PACKET/OPTICAL INTEGRATION  
Two alternative SDN-based hierarchical solutions are in phase of discussion in the community 
enabling control of coherent pluggable transceivers in a multi-layer network exploiting hybrid 
packet-optical nodes.  

2.5.1.1 Reference scenario and proposed solutions 
Figure 2-12 shows a traditional metro network using packet switching nodes (i.e., routers) 
and stand-alone transponders interconnected through optical line systems (OLSs), where the 
OLS is typically composed by a number of ROADMs and optical amplifiers. In this scenario, 
the SDN architecture is implemented with a clear domain separation. Three controllers are 
typically considered: a Hierarchical Controller (HrC) coordinating the end-to-end 
connectivity; an Optical Controller (OptC) in charge of transponders and OLS; and a Packet 
Controller (PckC) in charge of packet switching devices. However, since the two domains are 
practically independent of each other, the role of the HrC is almost limited to forwarding the 
received requests to one of the child controllers which, traditionally, has full and exclusive 
visibility on all underlying network elements. For example, OptC is the unique entity accessing 
the transponders while PckC is the unique entity configuring the packet nodes. 
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Figure 2-12 Traditional SDN architecture for transponder-based optical networks. 

The introduction of packet-optical nodes imposes the redesign of the overall SDN control 
architecture. Indeed, transponders are replaced by packet-optical nodes equipped with 
pluggable modules and the traditional control mechanisms provided by the PckC only are not 
sufficient to configure optical parameters. Since, in large metro networks, a single controller 
with visibility of both layers is not feasible due to scalability issues, a proper workflow needs 
to be defined to enable coordinated operations among controllers, where the HrC assumes 
a fundamental coordination role.  

2.5.2 Sonic generic architecture  
SONiC system's architecture is composed of various modules implemented as Docker 
containers that interact among each other through a centralized and scalable infrastructure. 
At the center of this infrastructure resides a redis-database engine, a key-value database that 
provides a language independent interface to all SONiC subsystems. Thanks to the 
publisher/subscriber messaging paradigm offered by the redis-engine infrastructure, 
applications can subscribe only to the data-views that they require. The docker containers 
run within the SONiC operating system, based on the Linux kernel, at user space level. Linux 
allows access to the hardware of the machine only in kernel mode, i.e., elevating the 
privileges of the running process in controlled mode. For this reason, the interface to the 
underlying hardware takes place by means of appropriate drivers. SONiC exploits the 
possibility of extending the Linux kernel thanks to the so-called Loadable Kernel Modules 
(LKM), which avoid the need to prepare a kernel version containing the drivers needed by 
the specific hardware, considerably simplifying the support of switches with different 
features. 

2.5.3 Pluggable management and control  
Whitin the BG5-OPEN project, the SONiC network operating system (NOS) running on the 
packet-optical node is extended with a new docker container that enables SDN on SONiC. A 
NETCONF Agent, developed in the BG5-OPEN project, is deployed in a docker container that 
runs within the NOS and, as depicted in Figure 2-13, communicates with the other containers 



 D4.4 GA Number 101016663 
 

15 
 

in the system for retrieving and writing information related to coherent pluggable modules. 
More in detail, in the SONiC version 202205 the pmon container runs an updated version of 
xcvrd daemon, capable to retrieve and write the coherent optical parameters from/to the 
registers of pluggable modules. The interfaces used by the demon are compliant with the 
CMIS v5.0 and C-CMIS v1.1 standards. The daemon periodically stores the optical 
transmission parameters in the Redis database. 

 

Figure 2-13 Pluggable management and control architecture 

SONiC utilizes custom YANG models that do not take into account optical pluggable modules. 
To address this limitation, in B5G-OPEN, the standard OpenConfig YANG model openconfig-
platform-transceiver.yang is used within the NETCONF agent to model the optical pluggable 
modules. More in details, the parameters in the model can be filled in two ways: in the first 
one, the agent reads the optical parameter stored in the Redis database by the xcvrd 
daemon. In the second one, the agent reads or writes the optical parameters of the pluggable 
module leveraging the API used by xcvrd. Indeed, as depicted in Figure 2-13 two bidirectional 
arrows reach the agent, they represent the communication interfaces (e.g., a socket or/and 
REST API), developed in B5G-OPEN to allow the exchange of information between the agent 
and/or Redis/Pmon containers. In B5G-OPEN the optical SDN controller communicates with 
the NETCONF agent to monitor and control the pluggable modules placed in the packet 
optical nodes. 

2.5.4   P2MP Pluggable Management and Control  
The management of P2MP pluggable modules proposed by Open XR [Swe22] considers a dual 
management structure. The first path, as shown in Figure 2-14 left side, provides the 
“traditional” functionality via the register-based information model defined in Multi-source 
agreements such as OIF CMIS. 

However, the latest version of CMIS lack the capabilities of setting up multiple subcarriers or 
dynamically assigning traffic to the different subcarriers. Hence, a second path, as shown in 
Figure 2-14 right, is proposed to be able to communicate directly with the P2MP pluggable. 
When the messages are destined for the Open XR module are received by the router, they 
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are handled by the Communication Agent Service running on the router. These messages are 
forwarded to the data path entering the Open XR module via the module host electrical lanes 
where they are recognized as management/control messages and handled appropriately.  

 

Figure 2-14 P2MP Control integration in B5G-OPEN 

2.6 TELEMETRY PLATFORM  
Telemetry data is collected from observation points in the devices (measurements), as well 
as events from applications/platforms (e.g., Software Defined Networking (SDN) controllers 
and orchestrator) which are then sent and collected by a central system. A telemetry 
“collector” or “mediator” agent may overcome this challenge and provide mechanisms to 
obtain a stable stream of telemetry from legacy devices. 

In B5G-OPEN, we have designed a telemetry architecture that supports both measurements 
and events telemetry. For the former, intelligent data aggregation is placed nearby data 
collection to reduce data volumes, whereas for event telemetry, data is transported 
transparently. 

2.6.1 B5G-OPEN Telemetry Architecture 
Figure 2-15 presents the network scenario, where the B5G-OPEN Control system is in charge 
of several optical nodes: optical transponders (TP) and reconfigurable optical add-drop 
multiplexers (ROADM). A centralized telemetry manager is in charge of receiving, processing, 
and storing telemetry data, including measurements and events. The telemetry database 
(DB) includes two repositories: i) the measurements DB is a time-series DB stores 
measurements, whereas the ii) the event DB is a free-text search engine. In addition, 
telemetry data can be exported to other external systems. 

Some data exchange between the SDN control and the telemetry manager is needed, e.g., 
the telemetry manager needs to access the topology DB describing the optical network 
topology, as well as the label switched path (LSP) DB describing the optical connections 
(theses DBs are not shown in the figure). Every node in the data plane is locally managed by 
a node agent, which translates the control messages received from the related SDN controller 
into operations in the local node and exports telemetry data collected from observation 
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points (labelled M) enabled at the optical nodes. In addition, events can be collected from 
applications and controllers (labelled E). 

 

Figure 2-15 Overall network architecture 

A detailed architecture of the proposed telemetry system is presented in Figure 2-16 for the 
case of measurements telemetry. The internal architecture of telemetry agents inside node 
agents and the telemetry manager is shown. Internally, both, the telemetry agent and 
manager are based on three main components: i) a manager module configuring and 
supervising the operation of the rest of the modules; ii) a number of modules that include 
algorithms (e.g., data processing, aggregation, etc.) and interfaces (e.g., gRPC); and iii) a Redis 
DB that is used in publish-subscribe mode to communicate the different modules among 
them. This solution provides an agile and reliable environment that simplifies 
communication, as well as the integration of new modules. A gRPC interface is used by the 
telemetry agents to export data to the telemetry manager, and by the telemetry manager to 
tune the behaviour of the algorithms in the agents. 

 

Figure 2-16 Measurements telemetry architecture and workflow 
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Events generated in a SDN controller (or other system), are injected in the telemetry agent, 
and transported transparently to the telemetry manager, which stores them in the Events 
DB and exports to external systems. Note that Null Algorithms are used here just to 
propagate events, which results in the same workflow as in the case of measurements, but 
no processing is performed. 

 

Figure 2-17 Events telemetry architecture and workflow 

2.6.2 OLS Node Agent and Telemetry Adaptor 
The OLS Node Agent is a Python-based application designed to stream telemetry data from 
multiple devices simultaneously. In the southbound direction, it collects data using NETCONF 
(for general telemetry) and SNMP (specifically for amplifiers). The agent can then push the 
collected metrics to various northbound plugins, including Redis, Apache Kafka, MQTT 
(Mosquitto), and InfluxDB. The agent handles telemetry data from a range of devices, 
including optical transponders, Carrier Ethernet switches, and optical amplifiers. When data 
is sent to message brokers like Kafka or MQTT, the Python script automatically initiates a 
Telegraf instance to collect and push these metrics into InfluxDB. This setup enables real-
time data handling for applications that require immediate performance data, such as 
machine learning models. 

 

Figure 2-18: Overview – OLS Node Agent 



 D4.4 GA Number 101016663 
 

19 
 

Additionally, the system stores historical data in a time-series database, which is 
advantageous for retrospective analysis and for training machine learning models. This dual 
approach supports both real-time analytics and long-term data retention, allowing flexible 
data handling to meet varied application needs. 

2.7 AUTONOMOUS NETWORKING AND QUALITY ASSURANCE 
The monitoring and performance telemetry system developed in this consortium will enable 
to close a control loop and envisage autonomous network operations.  

2.7.1 Autonomous Networking 
Optical Autonomous networks are based on several building blocks addressed in this project: 
physical impairment modelling and performance monitoring, telemetry systems and a 
control and orchestration.  From these building blocks, we envisage three main architectures 
to define the control loop: 

 a local control loop: This scenario is leveraging some limited intelligence at the node 
level. The main objective is the live optimization of a reduced set of parameters on a 
lightpath. One can cite the work already achieve by the members of the consortium 
on frequency optimization to mitigate the filtering penalties [Del19a], power 
optimization to mitigate transient loss [Gou21] hitless baudrate switching [Dut22].  

 A domain control loop: This scenario is the most common and is leveraging 
intelligence in a centralized architecture. A wide-ranging set of applications for 
closed loop reconfigurations can be deployed and are triggered in response to events 
identified in the central Telemetry Manager. Such an architecture, while not giving 
the best performance in term of reaction speed, will certainly provide the best 
overall decision [Del19b]. 

 A multi-domain control loop: This scenario is probably the most challenging as the 
parameters from one domain are not opened to the other domain and there is a 
need to rely on the previously explained knowledge sharing. It is also a centralized 
architecture empowered by AI/ML to have autonomous networking coordinated 
across domains without exchanging internal domain details.   
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Figure 2-19 Intra domain Control loop architecture 

 

2.7.2 Single-Domain and Multi-Domain Quality Assurance 
Quality assurance is based on Intent Based Networking (IBN) [IBN] applications to represent 
the optical transport network (Figure 2-20). In this section, we rely on a deep learning-based 
IBN application for the optical time domain, named OCATA [Rui22], which initial concept has 
been developed in B5G-OPEN. OCATA is based on the concatenation of deep neural networks 
(DNN) modelling optical links and nodes, which facilitates representing lightpaths. The DNNs 
can model linear and nonlinear noise, as well as optical filtering. Additional DNN-based 
models are proposed to extract useful lightpath metrics, such as lightpath length, number of 
optical links and nonlinear fibre parameters. 

OCATA includes a sandbox domain to pre-train DNN models, based on the measurements 
available through telemetry. Such models are made available to IBN applications, which use 
them to generate expected signals that can be compared with those obtained from the 
network. In that way, deviations between the observed and the expected signals can be 
detected and used for, e.g., soft-failure detection, identification, and localization. 
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Figure 2-20 Intent-based networking in the intra-domain 

Because telemetry and DNN models are domain internal, knowledge sharing is proposed for 
the IBN applications to solve the problem of inter-domain scenarios (Figure 2-21). IBN 
applications exchange their internal models for the segment of the optical lightpath in their 
domain. By working on DNNs’ internal architecture to ensure not disclosing internal domain 
details, such models can be shared among different domains to create end-to-end lightpaths’ 
models. Armed with such end-to-end lightpaths’ models, domain IBN applications can carry 
out diagnosis and collaborate to localize failures. 

 

Figure 2-21 Intent-based networking in multi-domain scenarios 

  



 D4.4 GA Number 101016663 
 

22 
 

3 B5G-OPEN SOFTWARE COMPONENTS 
This section lists and summarizes the main software components that have been designed, 
implemented and used in B5G-OPEN WP4 and WP5, including previously existing 
components that have been extended to address B5G-OPEN objectives and innovation 
aspects. 

3.1 B5G-ONP (ELIG) 
Component Name: B5G-ONP 
Summary This component is part of the control plane and orchestrates the IT and 

network resources. B5G-ONP provides design, optimization and planning 
tools to deploy, manage and configure services and resources, easing the 
integration with external components. It includes three main modules: i) 
Provisioning and Discovery module; ii) Dimensioning and analysis module; 
and iii) Optical Path Computation Element. The B5G-ONP communicates 
with the application/service layer (Operators) via its Northbound Interface 
(NBI) and interacts with the rest of the control plane elements (PON SDN 
Controller, IP SDN Controller, XR SDN Controller, TAPI Optical Network 
Orchestrator, and Kubernetes) by using the Southbound Interface (SBI).  

Description 
and  
Internal 
architecture 
of the 
component 

B5G-ONP is a control plane module which allows the coordination and 
orchestration of IT and network resources and provides the design, 
optimization and planning tools to deploy, manage and configure services 
and resources. Additionally, the B5G-ONP will prototype a user-friendly 
Graphical User Interface (GUI) aiming to improve the Quality of user 
Experience (QoE) and ease the interaction with the underlying components 
present in the network. Concerning process automation and Zero-Touch 
management, the B5G-ONP will expose a Northbound Interface (NBI) REST 
API to be used by network operators and higher-level components or 
services. On the other hand, B5G-ONP uses the Southbound Interface (SBI) 
to integrate with external components such as PON SDN Controller, IP SDN 
Controller, XR SDN Controller, TAPI Optical Network Orchestrator, and 
Kubernetes. 
  
The B5G-ONP component is a self-contained unit that integrates different 
modules to add the required functionalities and improve the network 
performance by having a clear understanding of the global requirements. 
The integrated modules are: 
  

- The Provisioning and Discovery module is responsible for 
orchestrating the allocation of network resources (physical and 
virtual) automating the deployment and configuration based on 
user requests, policies, and predefined templates. This unit scans 
and imports the network segment topologies and identifies the 
available services and dependencies as a centralized repository of 
this information and a comprehensive platform for managing the 
complex network environment for network administrators. 

  
- The Dimensioning and analysis module is in charge of predicting and 

optimising the performance of the network infrastructure by taking 
decisions on capacity planning and network dimensioning. This unit 
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uses data analytics and ML techniques to examine the network 
traffic patterns and resource utilization to predict the performance 
requirements (e.g., capacity, latency, jitter, etc.) of the network 
according to the topology and application requirements. 

  
- The Optical Path Computation Element considers technical factors 

to determine the best path for the optical connections based on 
available resources in the B5G-ONP reducing congestion and 
improving efficiency. This module requires the previous discovery 
work, estimating the performance of the different admissible paths. 
B5G-ONP will analyse the performance of the new path-candidates 
and establish the optimal configuration needed on the underlying 
resources (e.g., Optical SDN controller) to ensure the Quality of 
Transmission (QoT). This module is integrated in B5G-ONP as part 
of the network orchestration easing the integration with external 
components through a unique entity.  

Interface 
Specification 

The Northbound Interface (NBI) is the top interface between the B5G-ONP 
and the application and services that use the network resources based on 
REST API. The GUI uses the exposed information on this interface to define 
a pretty-printed schema of the network. The network operators define the 
network requirements via this interface (e.g., real-time network tasks such 
as the bandwidth allocation to a specific application, traffic priority, etc.), 
and underlying controllers configure the network resources and policies on 
network devices.  
  
The Southbound Interface (SBI) of the B5G-ONP, on the other hand, is the 
interconnection point with external components that B5G-ONP manages, 
translating the high-level network requests into concrete actions in layers 
below to drive the network configuration accordingly via NBI exposed by 
the controllers. This interface may include the RESTCONF protocol and 
different standards to enable communication with other modules such as 
Transport API (TAPI) or IETF RFC8345. B5G-ONP SBI enables network 
automation tasks (e.g., provisioning new network equipment, in real-time) 
improving the efficiency, availability and reliability of management tasks.  
  
The Optical Path Computation Element exposes an autonomous API, 
accessed by the TAPI Optical Network Orchestrator for planning and 
provisioning the B5G-OPEN networks. 
  
Exemplary Workflow:  
Once the network operator introduces the network requirements, the B5G-
ONP starts discovering the network topologies in the different segments 
and continues with the analysis based on the requirements and the 
available resources. Planning and dimensioning tasks, using the results of 
the analysis operations, will consider the required changes in the network 
to improve the performance and to meet the expected KPIs. B5G-ONP 
translates the adopted solution into low-level commands/calls into 
concrete actions to the corresponding control-plane entities via SBI. Once 
actions are applied, the orchestrator validates and tests the network 
performance under different conditions. Conversely, when external 
components report metrics back to the B5G-ONP the NBI must be able to 
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interpret those metrics and present them to the network administrator in a 
meaningful way. 
 

Functional 
Validation 

Tests done to validate the component: 
- The B5G-ONP component was tested by handling the expected user 

loads with minimal response times. The system effectively scaled 
up or down based on demand, performed concurrency operations, 
and maintained high efficiency under stress conditions. 
 

- Discovery validations from IP and optical segments were 
completed, ensuring accurate and coherent responses. The GUI 
correctly imported the complete topology and displayed it in the 
layout, providing a clear view of the system's status. 
 

- Provisions were executed to the required controller for creating 
new links within the topology. The GUI displayed these new links in 
the layout, accurately reflecting the requested changes (see figure 
below). 

 
 

- The analysis module's proposals were validated against existing 
network conditions, confirming that it offered optimal solutions 
based on current data. 
 

- In a Kubernetes context, tests were conducted to read the cluster's 
status, deploy new services or deployments, and verify the correct 
implementation and status of these services (see figure below). All 
operations were executed successfully and validated. 
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Component 
Integrations  
  
  
  
  
  
  

B5G-ONP using the exposed SBI allows the task automation with the 
following modules: 

- PON SDN Controller allows the network management and 
automation of this domain using the available tools and platforms 
via the NBI of the PON SDN Controller 

  
- IP SDN Controller supplies all the IP-based information and presents 

an API to read the state of the resources and provision new IP-
related services. 

  
- XR SDN Controller provides a centralized point of control for XR 

network resources in point-to-point or point-to-multipoint 
connections via the NBI exposed by the unit. 

  
- TAPI Optical Network Orchestrator offers a uniform, open and 

standardised way to obtain information from subsystem and sub-
controllers to B5G-ONP according to TAPI 2.1, and the exposed API 
by the module. 

  
- Kubernetes cluster (K8s) connected with B5G-ONP to automate the 

deployment, scaling, and management of applications to build 
more efficient and scalable IT infrastructures. The orchestrator, via 
kube-apiserver, addresses their tasks related to i) service discovery 
and load balancing, ii) configuration management, iii) security and 
access control, and iv) K8s monitoring and analytics.  

  
Component 
KPIs 

The KPIs measured are: 
 

- Discovery time: The time elapsed from when a network operator 
sends the discovery command until all layers of the topology are 
imported into B5G-ONP. This period varies from seconds to several 
minutes depending on factors such as network size, complexity, and 
the efficiency of the orchestrator. 

o Several measurements were taken, and discovery times 
differed based on the scenario and the controller being 
integrated. In a simple experiment, the average metrics 
were as follows: 

 TAPI Optical Network Orchestrator: 300 ms 
 IP SDN Controller: 4 seconds 
 Kubernetes Cluster: 2 seconds 
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- Provisioning time: The time from when a change occurs to a 
network resource or service until it becomes fully operational again. 
This period starts when B5G-ONP receives an instruction from the 
network operator or after the analysis task, when the orchestrator 
performs actions based on the analysis results. The time depends 
on the complexity of the network and services. 

o Multiple evaluations were performed. The time required 
for provisioning varied depending on the controller and the 
network size. From the project experiments, the following 
mean baseline values were recorded: 

 DSR provisioning: 237 ms 
 OLS path provisioning: 110 ms 
 IP BGP adjacency provisioning: 4 seconds 
 Reconfiguring OLS path provisioning: 200-300 ms 
 Kubernetes Deployment: 150 ms 
 Kubernetes Service: 100 ms 

- Optical Path Computation Element (PCE) latency: The time required 
to compute a path, which is directly proportional to the number of 
network elements involved and the traffic load on the network. 

o Multiple evaluations were conducted during the project 
experiments. The computation time varied significantly 
based on the number of nodes and connections present in 
the network. 

 PCE: average of 200 ms 
 Multiband-PCE: average of 600 ms, depending 

directly on the time consumed by the MB-PCE 
when requesting the optical context. 

  
Status, 
availability, 
repository 
 

E-Lighthouse Network Solutions SL proprietary software. 

Additional 
Remarks 

List of applicable publications: 
- Integration with B5G-ONP for multi-domain networks: [Cas24a] 
- Final demonstrations: [Mor24] 

 

3.2 TAPI-ENABLED OPTICAL NETWORK ORCHESTRATOR WITH EXTERNALIZED PATH 

COMPUTATION (CTTC) 
Component Name: TAPI-enabled Optical Network Orchestrator with externalized Path 
Computation 
 
Summary The TAPI-enabled Optical Network Orchestrator is a functional element 

of the architecture that is responsible for the following functions: i) 
providing a uniform, open and standard view and interface to the higher 
levels and components of the B5G-OPEN control, orchestration, and 
telemetry system; ii) Compose a complete Context to be consumed by 
B5G-OPEN network planner and additional consumers combining 
information retrieved from subsystems and sub-controllers (Optical 
Controller, external databases, monitoring systems, etc), iii) Enable single 
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entry point for provisioning DSR and Photonic Media services, including 
externalized path computation and iv) provide an event telemetry data 
source that reports events that happen asynchronously in the network. 
 

 
Description 
and  
Internal 
architecture 
of the 
component 

The core of the TAPI Optical Network Orchestrator controller is an 
asynchronous event loop. On the one hand, it exports multiple services 
via its multiple North Bound Interfaces (NBI) to users or clients, using 
RESTCONF/YANG. The most relevant services are Topology Management, 
Connectivity Service Management and Path Computation.  
 
The RESTCONF server is responsible for processing requests using the 
RESTCONF protocol. The planned Yang models are a subset of the ONF 
TAPI v2.1 Requests are mapped to internal structures and processed by 
functions in the event manager.  
 
The controller is a multi-threaded application, written in C++ (C++20). It 
targets GNU/Linux systems (e.g., Ubuntu 20.04 and later) and can be 
executed as docker containers. The design is highly modular, so 
additional functionality can be implemented as shared link libraries that 
can be configures and loaded on demand. 
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Interface  
Specification 

The Interfaces that have been developed and tested are the following 
 

 The TAPI Optical Network Orchestrator receives a new 
connection request with some requirements (source and 
destination, bandwidth provision, latency constraints, QoT 
conditions, etc.).  The client of this interface is the B5G-ONP and 
uses TAPI 2.1 for this purpose. 

 
 The interface from the TAPI Optical Network Orchestrator to the 

optical controller is based on the ONOS native interface, 
extending the existing implementation to support additional 
requirements and use cases. 
  

 The interface from the TAPI Optical Network Orchestrator to 
path Computation Engine is based on a specific instance of path 
computation interface defined in TAPI. 
 

 Additional interfaces have been defined to support the 
augmentation of topological elements with physical layer 
information data. 
 

 The interface towards the Telemetry System relies on acting as a 
REDIS client sending telemetry information following the TAPI 
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Reference Implementation Agreement (RIA) for streaming TR-
548 

 
Functional 
Validation 

Tests done to validate the component: 
 

 Launch the TAPI orchestrator and retrieve the topology in terms 
of nodes and links and display this information. This test shall be 
carried out: i) loading the information from a set of JSON files 
that have previously been retrieved and ii) performing dynamic 
loading of links and related data from the ONOS instance. 
 

 Retrieve the TAPI context from the TAPI orchestrator and 
validate the topology in terms of nodes and links. Validate that 
the TAPI context is correct and consistent and can be consumed 
by: i) B5G-ONP clients as well as ii) Path Computation Elements 
 

 Load a topology and validate that the TAPI orchestrator is able to 
report Telemetry data to the REDIS database that is part of the 
Telemetry System 
 

 Perform an externalized path computation and validate the 
function using an external PCE with TAPI enabled interface 
 

 Perform the provisioning of services 
 

See the list of publications showing the integrations and evaluation of the 
component. 
 

Component 
Integrations  
 
 
 
 
 
 

The TAPI-enabled optical network orchestrator integrates with the 
following elements: 

 The B5G-ONP. This functional entity is the main client of the 
controller. The B5G-ONP performs requests related to service 
provisioning in the optical network, using TAPI and requesting 
DSR connectivity services 
 

 The Optical Path Computation Element (PCE). The network 
orchestrator relies on a dedicated system for externalized path 
computation. For this, it uses extended TAPI interfaces for the 
purposes of topology discovery and path computation functions.  
 

 The Telemetry system to act as a data source for the reporting of 
events. This means that the TAPI orchestrator sends JSON 
encoded telemetry data to clients, such as OSS or data 
visualizers. 
 

 The ONOS SDN controller that takes care of provisioning 
connectivity by means of optical connectivity intents, using a 
dedicated interface. The interface shall be augmented to support 
the specification of a computed path (in terms of links as well as 
frequency ranges for the optical media channel to be used). 
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Component 
KPIs 

The KPIs to be measured are: 
 

 Service Provisioning Latency (< 10 min with hardware and < 30 
seconds with emulated hardware). This is the time it takes to 
provision an optical service.   

 
 Service Provisioning Overhead – In terms of messages, message 

size, encoding, etc. This includes a characterization of the 
protocol overhead (e.g., HTTP, RESTCONF, etc). 
 

 Path Computation Latency – measured as the time it takes to 
perform a path computation with a dedicated PCE. This is to be 
evaluated.  

 
Integration with Path Computation 
We developed the necessary extensions to the current ONF Transport API 
v2.1.3 photonic media layer models to support the dynamic provisioning 
of services of MB-WRN networks exploiting a MB-PCE. The development 
of these extensions is a challenging task as it requires to provide 
extensions a larger number of system parameters. The emulated network 
is BT’s optical mesh that consists of 22 ROADM nodes, 56 amplifiers, 28 
terminal devices (106 network elements in total) and 238 unidirectional 
links. For the scope of this experiment, it is assumed that each link may 
support E, S, C and L bands. 
 
The MB-PCE latency for scenario C was measured to be in the range 
between 1.8 – 2.2 seconds. This parameter value depends on whether 
the MB-PCE is also tasked to retrieve the network topology as explained 
above (first request in the series). On the contrary, this latency is two 
orders of magnitude lower, ranging between 17 ms and 36 ms, when the 
network status was already up to date (assuming state synchronization). 
In contrast, for scenarios A and B, the deliberate degradation of the 
OSNIR rendered a large number of the listed frequency slots as 
‘unavailable/void’, so the RMSA algorithm had to execute the PHY layer 
validation process thousands of times resulting to considerable delays for 
the MB-PCE to return results. For these two scenarios A and B, the latency 
is measured to be between 2.5 and 3.2 seconds.  
 
Integration with B5G-OPEN in multi-domain transparent networks: 
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In this scenario, we provision first a service between 2 transceivers in the 
same domain. The allocated path uses the O-band since the a-posteriori 
QoT validation (in terms of OSNR, PMD, CD and power levels of the signal) 
is within the receptor tolerances and a second test is between 2 
transceivers that are not in the same domain, and, in this case, the 
selected band is the C-band. For assessing the control plane latency 
values coming from the topology discovery, algorithm computation and 
provisioning phases, we provide in Table 1 averaged values coming from 
10 repetitions of the tests. Note that: (i) discovery and provisioning 
phases are relatively fast, since they operate on an emulated hardware, 
(ii) path and spectrum computation benefit from an optimized 
implementation of the algorithms, and a simplified impairments 
calculation that does not consider in this setup the Raman scattering 
effects. Note that by having a parallelized behaviour of the requests, 
overall latency is minimized with regards to the serialized setup and 
values from ENP are affected by Internet latency. 

 Measured at 
VPN / OLS 
(milliseconds) 

Mean value ENP 
(milliseconds) 

Discovery context 280 (empty) 
492 (services) 

931 

Single-domain 
provision 

2.5 (O-band) 309 

Multi-domain 
provision 

56 (C-band) 
parallel 

515 

 
B5G-OPEN Demo 
In each domain, the optical path set-up provisioning time is less than 1 
second. Moreover, PCE latency is measured to be in the range between 
0.5s and 0.6s and it is due to: a) the time needed to retrieve network 
topology and; b) the time needed for the PLI-aware RSA algorithm to 
return the selected path, band, channel frequency assignment, and 
optimal launch powers. The IP/BGP and pluggable configuration requires 
less than 4 seconds 
 
Integration with Nokia Chromatic Dispersion based algorithms  

 
 

Status, 
availability, 
repository 

CTTC Proprietary software 
 

Additional 
Remarks 
 

List of applicable publications: 
 

- Integration with Path Computation Elements: [Kos23]  
 

- Integration with S-BVT Open Config agents: [Cas24b] 
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- Integration with B5G-ONP for multi-domain networks: [Cas24a] 

 
- Final demonstrations: [Mor24] 

 
- Final demonstrations: [Boi24] 

 
 

3.3 PATH COMPUTATION ELEMENTS – MB-PCE – (OLC-E) 
Component Name: Multi-Band Path Computation Engine (MB-PCE) 
  
Summary The Multi-Band Path Computation Engine (MB-PCE) is based on a multi-

band routing engine which ensures that: i) routing is implemented by 
means of an efficient spectrum and modulation-format assignment; and 
ii) the impact of physical layer effects over the selected optical paths is 
estimated and the results are benchmarked against QoT target values 
(BER, OSNIR, OSNR, etc). In this way, the planning tool ascertains the 
conditions that maximize the total capacity of the network while it 
minimizes the global blocking probability and prevents network 
misconfiguration. 
  

   
Description 
and  
Internal 
architecture 
of the 
component 

The MB-PCE functionality is realised in three stages as follows: 
STAGE-I: Network Topology Implementation: the network topology is 
defined by setting the connectivity pattern between the nodes and the 
traffic matrix. Next, the k-shortest paths for all network node pairs are 
derived. More specifically, in this step, the following quantities are 
defined: the network topology including nodes, edges and amplifiers, the 
available optical bands, the capacity per band, the traffic matrix, the 
average time duration of the demands and the average inter-arrival time 
between two consecutive demands, as well as the available line-rates 
and their distribution on the demands. 
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STAGE–II:  Spectral and Modulation Assignment (SMA) and PL 
entanglement: the operation is completed in two steps: In the first step, 
i) a preliminary spectrum and modulation format assignment (SMA) is 
made for a number of the k-shortest paths, and ii) the Optical Signal to 
Noise plus Interference Ratio (OSNIR) for these shorter paths is estimated 
taking into account the impact of the physical layer effects by means of 
closed-form expressions.  
In the second step, the Optical Multi-band Physical Layer Aware Routing 
Modulation and Spectral Assignment (OMB-PLA-RMSA) algorithm either 
selects or rejects a lightpath. A path is rejected if a) no contiguous 
spectral slots are available in any optical band to support the end-to-end 
connection, b) either the OSNIR of the candidate lightpath falls short of 
the QoT estimator threshold or the OSNIR of at least one of the already 
established lightpaths would perform below the QoT threshold due to 
the presence of this candidate lightpath. In either (a), (b) cases, the 
rejected lightpath is assigned the next available path from the sorted list 
of k-shortest paths and it is then re-iterated. If these paths are all 
rejected, the first step is repeated using a lower cardinality SMA values. 
If no path is retained, the engine registers a blocking condition. 
STAGE–III: Path Allocation: This is the stage where the lightpaths are 
established in the network. The final assessment on network’s 
throughput is completed and a lightpath is successfully set if contiguous 
spectral slots are available over the end-to-end transparent path with 
acceptable physical layer performance (above the QoT estimator 
threshold). The successful establishment of a lightpath triggers the 
update of the corresponding arrays for each link of the path, e. g., arrays 
of power, modulation format, consumed frequency slots. 
  
  

Interface  
Specification 

Interfaces developed and tested: 
  

- The MB-PCE uses two interfaces to communicate with the TAPI 
Optical Network Orchestrator  

  
- The first interface is based on TAPI v2.1 and it is exposed by the 

TAPI Optical Network Orchestrator. MB-PCE uses this interface in 
order to retrieve the current optical network topology and 
status. 

  
- The second interface is exposed by the MB-PCE. It is again based 

on TAPI v2.1 and it is used by the TAPI Orchestrator. The TAPI 
Orchestrator request a path computation from the MB-PCE.  The 
MB-PCE analyses the request and computes the optimum path 
and send this information back to the TAPI Orchestrator. 

   
Functional 
Validation 

Tests that can be done to validate the component: 
  

- Launch the MB-PCE and retrieve the topology from TAPI Optical 
Network Orchestrator in terms of nodes and links and display this 
information. This test shall be carried out: i) loading the 
information from a set of JSON files that have previously been 
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retrieved and ii) performing dynamic loading of links and related 
data from the TAPI Optical Network Orchestrator. 

  
- Retrieve a new service request from TAPI Optical Network 

Orchestrator and validate that: a) the path is properly estimated; 
b) the correct band is selected; c) the number of frequency 
allocations units are correctly assigned; d) the correct 
frequencies are assigned to the service; e) the correct message is 
generated and send back to TAPI Optical Network Orchestrator. 

  
  

Component 
Integrations  
  
  
  
  
  
  
  

The MB-PCE integrates with the following elements: 
  

- The MB-PCE communicates with the TAPI Optical Network 
Orchestrator to realise two functionalities: a) Retrieve optical 
network topology; b) Path computation for a new service 
request. 

  
- Initially, MB-PCE communicates with the TAPI Optical Network 

Orchestrator using the TAPI v2.1 interface to retrieve the current 
optical network topology context and status. 

  
- Then, MB-PCE receives a new service request from the TAPI 

Optical Network Orchestrator using the TAPI v2.1 interface. The 
MB-PCE compute the optimum path and send this information 
back to the TAPI Optical Network Orchestrator, 

  
Component 
KPIs 

The KPIs measured are: 
 
1. Path Computation Latency 
This is the time it takes to MB-PCE to compute the path of a new service 
request, measured from the timestamps between request and response 
with a target value of < 40s. 
 
 Several scenarios were executed. The MB-PCE Path Computation 

Latency was measured to be in the range between 1.8 – 3.2 seconds 
 
2. TAPI Topology retrieval and parsing Latency 
This is the time it takes to MB-PCE to retrieve and parse the optical 
network topology context (described using the TAPI format), measured 
from the timestamps between request and response, with a target value 
of < 20s. 
 Several scenarios were executed. The MB-PCE Topology retrieval and 

parsing Latency was measured to be in the range between 0.9 – 2.5 
seconds 

 
Status, 
availability, 
repository 

OLC-E Proprietary software. The pseudocode of the algorithms together 
with a thorough description has been published in [Kos23] and D4.2. 
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Additional 
Remarks 
 

Some results were published in [Kos24:] 
Measurements were made of the optical SDN controller and the MB-PCE, 
connected via tunnels over the public Internet. The emulated network 
consisted of 22 ROADM nodes, 56 amplifiers, 28 terminal devices (106 
network elements in total) and 238 unidirectional links assumed to 
support the E, S, C and L bands.  
Three scenarios were presented, with the routing engine of the MB-PCE 
instructed to check the potential of the available bands to support service 
connection requests, searching over multiple transmission bands in the 
case of misconfigurations that could be either due to an erroneous data 
exchange between the MB-PCE elements or even the result of 
deliberate/malicious acts. The first scenario investigated the impact of a 
deliberate or accidental physical layer misconfiguration instruction on 
the completion (or not) of service requests in the case of fully transparent 
paths. In the second scenario was similar but the deliberate 
misconfiguration of the PHY parameters was less dramatic, while in the 
third scenario the parameters were within acceptable but suboptimal 
ranges.  
In the more realistic third scenario, the MB-PCE latency was measured to 
be in the range between 1.8 – 2.2 seconds. In contrast, for the other two 
scenarios with deliberate misconfigurations, the RMSA algorithm had to 
execute the PHY layer validation process thousands of times and the 
latency was higher, measured to be between 2.5 and 3.2 seconds. 
 

 

3.4 OPTICAL CONTROLLER (CNIT) 
Component Name: ONOS optical controller 
 
Summary The optical controller is based on ONOS SDN controller that provides a 

wide environment that is used to control and configure optical devices 
and transceiver equipped within packet/optical white boxes. In 
particular, the main roles of the optical controller are: (i) retrieve devices 
description from data plane and abstract them toward the upper control 
layers; (ii) receive the service configuration requests by the upper control 
layers and translate such requests in a set of configuration messages to 
be forwarded to each involved device. 
 

Description 
and  
Internal 
architecture of 
the 
component 

The 3.0 version of ONOS that we considered at the beginning of the 
project already provides a rich NBI based on REST APIs and, on its SBI it 
is already able to connect to a variety of packet-based and optical devices 
(e.g., exploiting NETCONF protocol). The ONOS core already implements 
the basic connectivity services using the concept of intent that simplify 
and automate the service management (e.g., in case of network failure).  
 
During the project, several developments within the ONOS controller 
have been implemented at different levels of the ONOS architecture (i.e., 
in the NBI, in the SBI and in the Core) for introducing B5G-OPEN specific 
features:  

1. Enable integration with T-API orchestrator (NBI) 



 D4.4 GA Number 101016663 
 

36 
 

2. Develop drivers toward new devices and update existing drivers 
against most recent versions of standard models (SBI) 

3. Introduce the support of flexible grid (NBI, core, SBI) 
4. Introduce the support of multi-band (NBI, core, SBI) 
5. Import/Export physical impairment device manifest (SBI, NBI) 
6. Activate intents using as end-points the ROADM’s ports (Core) 

 
In the figure below the aforementioned development (from 1 to 6) 
targets are mapped within the ONOS architecture, where each number 
is reported in the affected blocks. Blocks reported in white are not 
modified during the project, block reported in green have been upgraded 
during the project, while blocks reported in orange have been created 
from scratch during the project.  
 

 
 

Interface  
Specification 

The ONOS optical controller integrates with the following elements: 
 

 The TAPI-enabled optical network orchestrator. This entity will 
use REST APIs. 1) It will use POST (and DELETE) calls to perform 
requests related to service provisioning (and deletion) in the 
optical network.  2) it will use GET calls to retrieve information 
regarding network topology and details regarding links and 
devices.  

 
 The optical devices (i.e., packet-optical nodes, transponders, 

ROADM and OLS). Such devices expose to the controller a YANG 
models and provide a NETCONF server. The ONOS controller 
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uses a NETCONF client to retrieve information and configure the 
devices. 

 
Functional 
Validation 

The component has been utilized in several of the experimental 
demonstrations conducted during the project (e.g., in TIM and HHI) 
moreover it has been experimentally demonstrated in international 
conferences (e.g., [Gio23]). In these contexts, the following functional 
validations have been conducted multiple times and testified the 
reliability of the developed software. 
 

 Network discovery (mainly involve SBI), emulated environment. 
Launch the ONOS controller, including required applications and 
drivers. Post an emulated network topology including devices 
and links. Verify that all devices are correctly discovered, 
including interfaces and augmented details (e.g., related to 
physical impairments).  
 

 Network abstraction (mainly involve NBI), emulated 
environment. After network initialization verify that all the 
acquired information regarding devices is correctly exported in 
the REST APIs toward upper layers. 

 
 Service provisioning and releasement (involve NBI, core and SBI), 

emulated environment. Receive an intent request from the TAPI 
orchestrator (for several types of intent). Verify that the intent is 
correctly installed and that all involved devices are correctly 
configured. Cancel the configurations when an intent deletion 
request is received.   
 

 Device tests (mainly involve SBI), real devices. Push a specific 
device, test connectivity, device discovery and the ability to 
properly discover all the device details.  

 
Component 
Integrations  
 
 

Other components this component is integrated with: 
 The TAPI-enabled optical network orchestrator. 
 OpenROADM agent (ROADM by TIM)  
 OpenConfig agent (Transponder by CTTC) 
 OpenConfig agent (Pluggables in SONiC devices by CNIT) 

 
Component 
KPIs 

Set of component KPIs that have be measured during experimental 
demonstrations: 
 

 Time required for network discovery: 
o Measured in the order of tens of seconds, always lower 

than one minute.  
 Physical activation delay for an optical intent:  

o Measured in the order of one-two minutes mostly 
depending on the utilized transceivers. 

 Time elapsed in the controller: 
o Measured in the order of one second. 
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 Time elapsed for configuration of devices: 
o Devices typically confirm the reception of a 

configuration message in the order of few hundreds of 
milliseconds.  

 
Status, 
availability, 
repository 

ONOS version 3.0 has been forked at the beginning of the project.  A 
version with all the software contributions developed during B5G-OPEN 
project (and all scripts utilized during experimental demonstrations) is 
currently available in the following public repository: 
https://github.com/Network-And-Services/onos-b5g-open 
 

Additional 
Remarks 
 

Selected components the developed software have been contributed to 
the open-source ONOS community and are now part of the official ONOS 
distribution: 
https://gerrit.onosproject.org/c/onos/+/25681 
https://gerrit.onosproject.org/c/onos/+/25616 
https://gerrit.onosproject.org/c/onos/+/25596 
https://gerrit.onosproject.org/c/onos/+/25594 
https://gerrit.onosproject.org/c/onos/+/25593 
https://gerrit.onosproject.org/c/onos/+/25168 
 

 

3.5 ACCESS CONTROLLER / PON CONTROLLER (OLC-E) 
Component Name: Access Controller / PON Controller 
  
Summary The B5G-OPEN TDM-PON infrastructure is realised using an XGS-PON OLT 

pluggable transceiver (e.g., TiBit pluggable) and a couple of pluggable ONUs 
(e.g., Tibit ONUs). The OLT is interfaced directly to a whitebox switch while 
the OLT is interconnected to the ONUs by means of splitters, forming up an 
ODN branch. Τhe PON vendor (Tibit) will provide the pluggable software 
and the PON controller software. The integration of Tibit PON Controller 
with the B5G OPEN platform is realised with the development of an Access 
Controller as illustrated in the below figure. The Access Controller is 
responsible to: a) monitor the PON network and receive any requests for 
PON reconfiguration; b) translate these requests into high level traffic 
requests that is reported to the B5G-ONP App; c) execute the appropriate 
actions in the PON Controller in order to support the new requests. 
In addition, the Access Controller will communicate with the LiFi Controller 
for retrieving any connection/traffic requests. 
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Description 
and  
Internal 
architecture 
of the 
component 

The Access Controller is developed as part of the B5G-OPEN software 
platform, and it will provide the below functionalities: 

 On the South Bound Interface (SBI), the Access Controller will 
communicate with the vendor specific PON Controller using a 
subset of the BBF/ITU YANG models. The SBI that communicates 
with the PON Controller is a software client that is developed based 
on OLT PON SDK.  

 On the South Bound Interface (SBI), the Access Controller will 
communicate with the LiFi Controller using REST/JSON for receiving 
any connectivity/traffic requests generated in the LiFi network. 

 The Access Controller implements a set of: a) PON abstraction 
functions which are responsible to extract the PON parameters and 
their values; b) LiFi abstraction functions for extracting LiFi traffic 
parameters. In addition, the PON and LiFi abstraction functions will 
expose to the higher layers only the valuable for the B5G-OPEN 
software platform set of parameters. 

 On the Northbound Interface (NBI), the Access Controller 
communicates with the B5G-ONP app. The NBI implements a 
REST/JSON server which will support the exchange of traffic related 
information adopting a data structure defined in B5G-OPEN 
project. 

   
Interface  
Specificatio
n 

Interfaces developed and tested: 
  

- The Access Controller communicates with the PON Controller 
(Tibit) using the OLT PON SDK. 

  
- The Access Controller communicates with the LiFi Controller using 

REST/JSON 
  

- The Access Controller exposed one interface toward the B5G-ONP 
app component. The interface is realised using REST/JSON.  
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Functional 
Validation 

Tests that can be done to validate the component: 
  

- Deploy the PON network including the XGS-PON OLT pluggable 
transceiver and a couple of pluggable ONUs. Launch the PON 
Controller. Then launch the Access Controller and test that: a) the 
Access Controller communicates successfully with the PON 
Controller; b) the Access Controller retrieves the PON configuration 
information. 

  
- Deploy the PON network and launch both the PON Controller and 

LiFi Controller. Then launch the Access Controller. Then LiFi 
Controller will generate a new traffic request and send to Access 
Controller. Then test that: a) the Access Controller receives 
successfully the request and parse all its data; b) translate the new 
request into a high level traffic request; c) deliver the high level 
traffic request to the B5G-ONP app using the NBI; d) execute the 
appropriate reconfiguration actions in the PON Controller; e) 
observe that the new PON configuration is realised in the testbed. 

  
Component 
Integrations  
 

The Access Controller integrates with the following elements: 
  

- The vendor specific (Tibit) PON Controller using the SBI. 
Communication realized using OLT PON SDK. 

  
- The LiFi Controller using the SBI. Communication using REST/JSON. 

  
- The B5G-ONP app using the NBI. Communication using REST/JSON. 

 
  

Component 
KPIs 

The KPIs measured are: 
 
1. PON Reconfiguration Latency 
This is the time it takes for the actual reconfiguration of the PON network, 
Measured as time difference between the request timestamp and response 
timestamp, with a target value of < 20s. 
 
Initially, we measured latencies for retrieving the configuration and status 
information from different elements in the PON network. In detail: 
• Login: 160 – 200 ms 
• Retrieving Controller configuration: 206 - 290 ms 
• Retrieving OLTs configuration: 160 – 220 ms 
• Retrieving ONUs configuration: 130 - 220 ms 
• Retrieving configuration of selected OLT: 160 - 190 ms 
• Retrieving configuration of selected OLT: 123 - 180 ms 
• Retrieving SLAs: 130 - 310 ms 
• Retrieving configuration of selected SLA: 150 - 204 ms 
 
In addition, the PON Reconfiguration Latency is measured in terms of 
reconfiguring the SLAs that defines the OLT upstream and downlink 
bandwidth profiles: 
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• PON Reconfiguration Latency (SLA update and application): 450 - 
600 ms 
 
All the measured values are below 1s, therefore far lower than the target 
of 20s.  
 
2. Access Controller Latencies  
This is the time it takes to Access Controller to execute different 
functionalities including: a) to receive a new request and parse all its data; 
b) to translate the new request into a high level traffic request; c) to deliver 
the high level traffic request to the B5G-ONP app; d) to execute the 
appropriate actions in the PON Controller. The latency is measured from 
the timestamps between request and response or timestamps between 
starting and completing a specific task. 
 
Here are the values reported in the Berlin Demo (WP5): 
 Authentication: 234 ms – 790 ms 
 PON SLA creation: 187 ms – 781 ms 
 ONU SLA configuration: 316 ms – 529 ms 
 Logout: 71 ms – 514 ms 
 Send access traffic descriptor to B5G-ONP app: 51 ms – 79 ms 
 Response from B5G-ONP app: 53 ms – 7260 ms 

 
Status, 
availability, 
repository 

OLC-E Proprietary software 
 

Additional 
Remarks 
 

Details on the access controller latencies will be presented in D5.2 “Final 
experimental B5G-OPEN validation.” 
 

 

3.6 LIFI CONTROLLER (PLF) 
Component Name: LiFi Controller 
 
Summary The LiFi controller for managing LiFi APs with LiFi agents is a simple 

controller that allows for device discovery and configurations such as 
accessing SSIDs, IP addresses, and enabling/disabling APs. It is positioned 
between the PON controller and the LiFi agents, and it is designed to be 
lightweight and efficient with minimal processing requirements. 
 

Description 
and  
Internal 
architecture of 
the 
component 

The LiFi controller communicates with the LiFi agents on the LiFi APs 
using NETCONF protocol, allowing for centralized management and 
control of the network. The controller includes a REST API for 
programmatic control and integration with the PON controller.  
The LiFi controller would be capable of the following functions: 
 Network Topology Discovery: The LiFi controller is able to discover 

the topology of the network, including all devices and links between 
them. 

 Network Configuration Management: the LiFi controller is able to 
configure the LiFi APs via the LiFi agents, by sending commands 
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through the SBI. The configurations supported include 
accessing/modifying SSIDs, IP addresses, enabling/disabling APs. 

 Network Monitoring: the LiFi controller is able to monitor the 
throughput and latency of the LiFi APs. 

Network Automation: The LiFi controller is able to automate network 
operations, such as provisioning or configuration, to reduce manual 
effort and improve efficiency.  
 

 
Interface  
Specification 

The LiFi controller uses two main interfaces for communication with the 
PON controller and the LiFi agents: 
 REST API (NBI): The REST API provides a simple and standardized way 

for external applications and systems to interact with the LiFi 
controller. The REST API uses HTTP/HTTPS as its transport protocol 
and supports a range of operations, including GET, PUT, POST, and 
DELETE. Using the REST API, external applications can retrieve 
information from the controller, configure the LiFi APs, and monitor 
the status of the LiFi network. 

 NETCONF (SBI): The NETCONF protocol provides a standardized way 
for the LiFi controller to communicate with the LiFi agents. NETCONF 
uses XML-based messages over SSH or TLS to perform operations 
such as configuration, monitoring, and software management. The 
use of NETCONF as the SBI ensures that the SDN controller can 
communicate with the SDN agents in a secure and reliable manner. 
Currently the configurations to be supported including the access 
and modifications on the SSIDs, IP addresses, as well as 
enabling/disabling the APs.  
 

By using both REST API and NETCONF, the LiFi controller can provide a 
flexible and scalable solution for managing the LiFi APs with LiFi agents. 
The REST API enables easy integration with external systems and 
applications, while NETCONF provides a robust and standardized 
interface for communication with the LiFi agents. 
 

Functional 
Validation 

Several tests can be performed to validate the functionality and 
performance, which include: 
Basic functionality test: this test ensures the LiFi controller is able to 
performance the basic functions such as discovering all connected LiFi 
agents, accessing/modifying SSIDs, IP addresses, and enabling/disabling 
APs, etc. 
Integration test: This test ensures the LiFi controller is able to integrate 
with PON controller via the REST API. 
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Scalability test: This test evaluates the ability of the controller to handle 
multiple LiFi APs with LiFi agents.   
  
By performing these tests, the LiFi controller can be validated for its 
functionality, performance, and reliability, ensuring that it meets the 
requirements for managing LiFi APs with SDN agents 
 

Component 
Integrations  
 

The LiFi controller has been installed in the VM provided by HHI. It has 
been tested with several LiFi APs with LiFi agent implemented. On the 
other side, the LiFi controller communicates with the Access controller. 
 

Component 
KPIs 

Some key indicators showing in the functional validation: 
Device Management Accuracy: Upon LiFi switched on, it should be 
discovered and recognised by the controller. And the controller should 
be able to manage devices correctly. This KPI assesses how accurately 
the controller works and manages device states. No failure was observed 
in normal working conditions. 
Scalability: Evaluate the controller's ability to scale by managing an 
increasing number of LiFi devices without performance degradation. It 
has been tested for up to three devices in lab condition. 
Latency: the latencies that the controller responds to user’s request. This 
is measured between 10~70 ms, excluding any NETCONF sessions 
accessing the LiFi agent.  
 

Status, 
availability, 
repository 

Status: The controller has been implemented, applied and tested in the 
project. 
Availability: The LiFi controller is based on ONOS which is available to 
public. This controller has not been made publicly available yet as it is 
designed for managing the LiFi agent which is product specific.    
 

Additional 
Remarks 
 

No additional remarks 
 
 

 

3.7 LIFI AGENT (PLF) 
Component Name: LiFi Agent 
 
Summary The LiFi agent for managing LiFi APs is a software component that runs 

on each AP and communicates with the LiFi controller via the Netconf 
protocol. The agent is responsible for managing the network 
configuration of the AP, including SSIDs, IP addresses, and other basic 
parameters.  

Description 
and  
Internal 
architecture of 
the 
component 

The LiFi agent for LiFi APs provides a standardized and programmable 
interface for managing network configurations, allowing network 
operators to automate the configuration and management of the LiFi 
networks. 
 
The LiFi AP consists embedded Linux system and it has been 
implemented for network configuration management based on the 
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NETCONF protocol by using sysrepo, netopeer2-server, netopeer-cli and 
sysrepo-plugin.  
 

 
 

Interface  
Specification 

The NETCONF protocol was used which provides a standardized way for 
the LiFi agents to communicate with the LiFi controller. NETCONF uses 
XML-based messages over SSH or TLS to perform operations such as 
configuration, monitoring, and software management. 
 
A LiFi specific YANG model has been implemented to manage the LiFi 
APs. The LiFi YANG model is called plf-lifi and is illustrated in figure below.  

 
 

Functional 
Validation 

 
The LiFi agent has been validated on completing the designed functions 
together with the implemented LiFi controller, including: 

 Retrieve device information 
 Modify device information 
 Remove device information 
 Collect and prepare device telemetry data for transferring to LiFi 

controller and the Access controller. 
 Scalability Tests: These tests validate that multiple LiFi APs with 

multiple LiFi agents are able to work with one LiFi controller, 
without experiencing performance issues or errors. 
 

 
Component 
Integrations  
 

The LiFi Agent has been applied to multiple LiFi APs and communicates 
with the LiFi controller via NETCONF interface. 
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Component 
KPIs 

Several KPIs for validating the developed agent: 
  
 Device Recognition Success Rate: Measure how often the agent 

successfully recognizes and interfaces with devices. No failure was 
observed on recognising the LiFi APs. 

 Configuration Accuracy: Evaluate how accurately the agent applies 
the configuration changes to the devices and no failure observed. 

 Stability: while applying the agent in multiple LiFi AP devices, 
evaluate how reliable and stable the agent is. It has been tested with 
up to three LiFi APs in lab condition. 

 Latency: The latencies for accessing the LiFi AP is measured between 
5~20 ms, while the latency for having a NETCONF session is typically 
30~71 ms. In worst condition that the light communication path is 
partially blocked, 150 ms has been observed.  

 
Status, 
availability, 
repository 

Status: The agent has been implemented, applied and tested in the 
project. 
Availability: The agent will not be public available. It is an enhancement 
to current LiFi product and will be applied to the APs for NETCONF 
support. 
 

Additional 
Remarks 
 

No additional remarks 
 

 

3.8 OPENROADM AGENT (TIM) 
Component Name: TIM OpenROADM Agent 
 
Summary The TIM OpenROADM agent is an implementation of a NETCONF server 

controlling optical network elements using OpenROADM device models. 
It’s basically an evolution of the agent developed for the H2020 Metro-
Haul project enhanced to cover MultiBand technology exploiting the 
latest OpenROADM models. 
 

Description 
and  
Internal 
architecture 
of the 
component 

The OpenROADM agent exploits the transAPI framework available for 
Netopeer, an open source implementation of the NETCONF protocol. The 
transAPI allows invoking call-back functions whenever an edit-config rpc 
operation performs changes on a specific branch of the configuration. 
Starting from this feature, the agent implements call-back functions that 
manage the controller requests for the creation of the interfaces that, 
according to the OpenROADM device model, are required for connection 
and optical channel setup. 
To decouple the OpenROADM model processing from the action 
required by the underlying hardware, the agent architecture leverages 
on the Linux dynamic libraries subsystem to load specific drivers at 
runtime. The drivers are associated to circuit-packs, an OpenROADM 
entity used to model atomic elements inside a device that, according to 
the model, must have a type attribute. For the agent, every circuit-
pack-type can have its specific driver that is loaded by the main module 
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when an edit-config rpc creates the first circuit-pack of that type. 
The following figure shows the agent architecture applied to a ROADM 
architecture. 

 
 

Interface  
Specification 

The OpenROADM agent has two different interfaces: a NorthBound 
interface towards an SDN controller and some SouthBound interfaces 
towards the data plane devices. 
 
The NBI is a NETCONF/YANG interface implementing the OpenROADM 
device models. For the B5G-OPEN project, the agent has been upgraded 
to the 12.1 device model in order to incorporate all the latest 
enhancements dedicated to the multiband technology. 
The YANG models that are involved (directly or because imported by 
other models) are: 
org-openroadm-device.yang 
org-openroadm-network-media-channel-interfaces.yang 
org-openroadm-media-channel-interfaces.yang 
org-openroadm-prot-otn-linear-aps.yang 
org-openroadm-port-capability.yang 
org-openroadm-rstp.yang 
org-openroadm-otn-odu-interfaces.yang 
org-openroadm-otn-otu-interfaces.yang 
org-openroadm-optical-transport-interfaces.yang 
org-openroadm-lldp.yang 
org-openroadm-ethernet-interfaces.yang 
 
The SBI is a proprietary interface based on function calls. A driver module 
implements functions to perform actions on the circuit-packs composing 
the device. For example, a ROADM degree can be composed of WSSes 
and amplifiers modelled as programmable circuit-packs and a dedicated 
driver can be written for configuring them. The functions that a driver 
can implement are the: 
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 init: called during agent start-up to set up the internal 
communication session between the agent and the circuit-pack 
and to perform initial circuit-pack setup. 

 close: called at agent closing to free all the allocated resources. 
 get_inventory: called when the agent needs circuit-pack 

inventory information. 
 get_port_operational_state: called to get the operational state 

of a port. 
 get_port_mc_capabilities: called by the agent to retrieve the 

optical capabilities (in terms of supported bands) of a device’s 
port. 

 make_connection: cross-connection (spectral window) creation 
between circuit-pack ports. 

 delete_connection: cross-connection removal. 
 
To cope with circuit packs that are not programmable (such as mux-
demux), all functions are optional, but the followings constraints apply: 

 If init function is defined the close function must be present. 
 If make_connection is defined the init function must be present. 
 If make_connection is defined the delete_connection function 

must be present. 
 
It’s worth specifying that the agent software architecture is flexible 
enough to manage devices composed of circuit-packs from different 
vendors and allows easy implementations of emulators, since it is 
possible to create “dummy” drivers that perform no actions. This feature 
has been exploited to control TU/e hardware prototypes. 
 

Functional 
Validation 

The tests that can be done to validate the OpenROADM agent are the 
following: 
 

 Startup of the netopeer-server daemon and loading of the 
transAPI module implementing the agent, of the OpenROADM 
device models and of the initial configuration data. After loading 
the configuration data, the agent must load all the configured 
device drivers (Loadable Linux libraries) and identify the 
implemented API functions. 

 
 Using a NETCONF client (e.g. netopeer-cli), retrieval of 

configuration and state data, focusing on the optical parameters, 
in terms of supported spectral windows (media channel 
capabilities). 
 

 Edit-config operation to create cross-connections on the 
different bands of a multi-band ROADM 
 

 Edit-config operation to setup the transmission wavelength on a 
ZR/ZR+ pluggable module  

 
Component 
Integrations  

The OpenROADM agent has been integrated with the ONOS SDN 
Controller for the control of multiband ROADMs. 
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Component 
KPIs 

The kind of KPI that can be applied to the agent are related to delays and 
latencies. The agent architecture allows it to be employed with different 
data-plane hardware to implement basic OpenROADM based ROADMs 
and transponders. This makes it difficult to define a set of measurements 
that can characterize all kind of devices that can be implemented. 
Moreover, most of the time required to perform different actions is 
spent by the specific data plane hardware and it results to be several 
orders of magnitude slower than the time taken by the agent for 
NETCONF messages processing (tenth of seconds wrt tenth of 
milliseconds). Therefore, it’s clear that it would be more meaningful to 
characterize a device employing the agent. 
That said and keeping in mind that delays involving a software module 
are negligible wrt delays of optical resources, it can be meaningful to 
characterize the agent as a standalone component (i.e. without 
underlying data-plane hardware) from a scalability point of view. The 
following KPIs are defined: 

 Changes of loading time of the startup datastore (at agent 
initialization) wrt the number of modelled circuit-packs, i.e. wrt 
to the datastore dimensions. For example, in the ROADM case 
how startup times changes increasing the degrees number (2, 4, 
9 to cover the most typical ROADMs sizes). 

 Time required to create roadm-connections (express or add-
drop) as a function of the number of degrees (2, 4, 9), i.e. of the 
datastore dimensions. 

Such tests have been documented in deliverable D4.2. 
 

Status, 
availability, 
repository 

The agent is publicly available as a docker container. Access is granted 
on-demand, aiming at providing further collaboration opportunities.  

Additional 
Remarks 

No remarks. 
 

 

3.9 OPENCONFIG AGENT (CTTC AND CNIT) 
Component Name: CTTC OpenConfig agent, CNIT OpenConfig agent 
 
Summary B5G-OPEN has produced two different implementations of the OpenConfig 

agent. One implemented at CTTC with the main aim of integrating it with 
the CTTC developed multi-band transceiver and one implemented at CNIT 
with the main aim of integrating it into the packet-optical SONiC based 
node. Since the software architecture, interfaces, and proposed KPIs are 
the same, both implementations are described in this section.   
 
OpenConfig agent is an implementation of an SDN agent using 
NETCONF/YANG with the OpenConfig data models. 
 
It implements a subset of the data models, namely the OpenConfig 
platform and optical transport as well as some extensions devised in the 
context of B5G-OPEN to report details about the transceiver operational 
modes. 
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The software relies on ConfD free, a Tail-f/Cisco management agent 
software framework for network elements. It enables the industry 
adoption of NETCONF and YANG, and provides a simple mechanism to 
develop SDN agents focusing on the business logic and on the actual data 
models and semantics. 
 

 
Description 
and  
Internal 
architecture 
of the 
component 

OpenConfig agent relies on a ConfD process running, which implements 
the basic NETCONF/Yang framework. The software per-compiles data 
models and keeps a Configuration Database (CDB). 
 
Open Optical Terminals in general covers transponders, switchponders, 
muxponders, etc. with the ability to switch and multiplex multiple client 
signals into optical signals. The agent deals with uniform components 
hierarchy, multiplexing stages and Cross-connection logic discovery and  
Optical channel configuration (Frequency, power and operational mode). 
 
The actual logic is implemented as a second process that connects to the 
ConfD daemon via dedicated sockets. This process is written in C++ and 
implements different classes for interacting with the ConfD engine. MAAPI 
is C API which provides full access to the ConfD internal transaction engine. 
CDB API can read (committed) configuration from the CDB and has 
functions like cdb_set_value for operational (state) data only. With MAAPI 
it is possible to create or attach to existing transaction and access 
configuration data in the CDB.  The modifications will be then propagated 
at commit time of the transaction. 
 
Notably, the agent takes care of the following aspects: 

 
 Notification of changes in the configuration database: in this sense, 

the actual SDN agent may react and configure the hardware 
accordingly. In particular, it registers appropriate call-backs for 
changes in the configuration of Optical Channels, including the 
actual frequency, transmit optical power and operational mode 
 

 It relies on CDB API and MAAPI from ConfD to write on the 
operational data store, in such a way that operational data can be 
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written to the ConfD database based on the status of the 
hardware. In particular, the agent MUST report the composition of 
the actual device in terms of components and subcomponents and 
reflect configuration changes (e.g., config/frequency) into state 
values (e.g., state/frequency).  
 

 
 
 

Interface  
Specificatio
n 

The interfaces of the component are: 
 

 NETCONF/YANG as the basic framework. 
 
The supported data models are, for and OpenConfig release: 
 
openconfig/optical-transport/openconfig-transport-types@2017-
08-16.yang 
 
ietf/ietf-interfaces@2014-05-08.yang 
 
openconfig/interfaces/openconfig-interfaces@2017-07-14.yang 
 
openconfig/types/*.yang 
openconfig/platform/*.yang  
openconfig/optical-transport/*.yang  

 
In particular, the agent implements the following extensions: 
 
b5gopen/openconfig-terminal-device-property-types.yang  
 
b5gopen/openconfig-terminal-device-properties.yang 

 
 
The workflows that are in scope of B5G-OPEN are: 

 Device discovery (NETCONF GET) 
 

 OpenConfig Component discovery (NETCONF GET) 
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Functional 
Validation 

The tests that can be done to validate the component are the following: 
 

 Startup of the ConfD daemon and loading of initial operational and 
configuration data 
 

 Retrieval of the datastore of the NETCONF agent. 
 

 Retrieval of components of the OpenConfig terminal device, 
including focusing on the optical channel augment. 
 

 Retrieval of the characteristics and current state of an Optical 
Channel components 
 

 Dynamic configuration of an optical channel attributes. This can be 
done as an emulated device or integrated with CTTC S-BVT and 
SONiC-based packet-optical nodes (i.e., pluggable configuration). 
 

 Characterization of a given Operational Mode (e.g., mode-id 100) 
in terms of B5G-OPEN physical impairment validation.  

 
Component 
Integrations  
 

The OpenConfig agent is integrated with the ONOS SDN Controller, for the 
control of sliceable BVTs as well as CTTC optical SDN controller 
 

augment /oc-platform:components/oc-platform:component:
+--rw optical-channel

+--rw config
|  +--rw frequency?             oc-opt-types:frequency-type
|  +--rw target-output-power?   decimal64
|  +--rw operational-mode?      uint16
|  +--rw line-port?             -> /oc-platform:components/component/name
+--ro state

+--ro frequency?                                   
+--ro target-output-power?               
+--ro operational-mode?                  
+--ro line-port?                                   
+--ro group-id?                                    
+--ro output-power
|  +--ro instant?    decimal64
|  +--ro avg?        decimal64
|  +--ro min?        decimal64
|  +--ro max?        decimal64
|  +--ro interval?   oc-types:stat-interval
|  +--ro min-time?   oc-types:timeticks64
|  +--ro max-time?   oc-types:timeticks64
+--ro input-power
+--ro laser-bias-current
+--ro chromatic-dispersion
+--ro polarization-mode-dispersion
+--ro second-order-polarization-mode-dispersion
+--ro polarization-dependent-loss

<edit-config>

<target>{{target}}</target>

<config>

<components xmlns="http://openconfig.net/yang/platform">

<component>

<name>{{och_component_name}}</name>

<oc-opt-term:optical-channel xmlns:oc-opt-term

="http://openconfig.net/yang/terminal-device">

<config>

<frequency>{{freq_value}}</frequency>

<target-output-power>{{power}}</target-output-power>

<operational-mode>{{mode}}</operational-mode>

</config>

</oc-opt-term:optical-channel>

</component>

</components>

</config>
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The validation covers the management of S-BVT operational modes across 
the whole provisioning process workflow. We demonstrate the retrieval of 
the operational modes, how they are mapped to TAPI transceiver profiles, 
and later used for path computation/validation and the subsequent 
configuration of the BVT, including closed-loop adaptive transmission use 
cases. 
 
The CNIT version of the OpenConfig agent has been integrated with the 
SONiC-based switche and with the HHI transponders utilized in the 
experimental demonstration performed at HHI premises.  
 

Component 
KPIs 

The considered set of component KPIs that can be measured 
independently: 
 

 Instantiation delay and footprint: when the agent is running as a 
containerized application, characterized aspects related to 
instantiation of the agent, as well as aspects related to memory 
usage. 
 

 Discovery latency: measure the time and the control plane 
overhead (in terms of bytes, and throughput) it takes for an SDN 
controller to discover the components of the transceiver upon a 
NETCONF get operation.   

 
 Operational Mode characterization: measure the time and the 

control plane overhead (in terms of bytes, and throughput) it takes 
for an SDN controller to discover the details of a given operational 
mode, as defined within  
 

b5gopen/openconfig-terminal-device-property-types.yang  
 
b5gopen/openconfig-terminal-device-properties.yang 

 
 Transaction delay: the time it takes to send a configuration change, 

and this is reflected in the datastore. The focus shall be to change 
an Optical channel frequency, power and operational model. This 
KPI will be evaluated with and without hardware 
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- The Instantiation Delay characterizes aspects related to the 

instantiation of the agent’s containers, and/or memory usage. 
Launching the ConfD framework, which includes the loading of the 
operational and initial configuration data, can range from ~17 – 20 
ms (lower bound when operational data and config data are pre-
stored in xml files) to several seconds (1.230 s in a sample 
execution). This is due to the latency to retrieve operational data 
from the devices. The HAL startup time is ~8 ms, including 
subscription to events. Consequently, including the container 
orchestration latency, the initial startup of the SDN agent is 
characterized by O(10s). 
 

- The Discovery latency is defined as the time of the SDN controller 
to discover the components of the transceiver upon a NETCONF 
get operation. This latency comprises the time and the control 
plane overhead (in terms of bytes, and throughput). With a back-
to-back setting between the controller and the agent, the retrieval 
of components is done in ~475 ms (for an equivalent of ~400 xml 
lines). Similarly, the Operational Mode Characterization latency is 
the time to obtain the parameters of a given operational mode 
given its mode-id (see Fig. 10). The retrieval of the operational 
mode took ~300ms, associated to a NETCONF reply with 84 XML 
lines (4837 characters). 

 
- At the transmitter side, the central frequency and power of the 

Tunable Laser Source (TLS) and the Digital/Analog Converter (DAC) 
channels are modified. At the receiver side, the OSC can be 
reconfigured. For example, two transceiver slices of the S-BVT1, 
working within C- and S-bands and corresponding to two different 
clients (c1 and c2), and two receiver slices of the S-BVT2 are 
configured.  This operation determines different parameters, such 
as frequency (e.g., 193.4 THz, 200.26 THz), operational-mode (e.g., 
111), name (e.g., OCH-A-Out-1, OCH-A-Out-2), power (e.g., 6.5 
dBm, 4 dBm), status (e.g., enabled, disabled), type (e.g., optical-
channel) and direction (e.g., TX, RX). Note that in this case, the 
power at S band is lower being constrained by laser stability. 

- A total setup time of ~300s is needed to perform all the required 
OpenConfig operations to set up the connection. This time is 
mainly caused by the programmable elements of the MB S-BVT1, 
which include the TLS and the DAC, and are eventually configured 
within ~60s. On the other hand, the configuration of the MB S-
BVT2 requires a higher setup time around 254s. The reason behind 
this is the time needed to configure the oscilloscope, which acts as 
ADC and includes both the signal acquisition and SNR/BER 
calculation (offline DSP).  

 
We use MQTT as a streaming platform where a MQTT intermediate broker 
forwards publications in topics to subscribers. This enables synchronizing 
the FlexOpt SDN controller (publisher) with the PCE/DT functional element 
(subscriber). The latter connects to the Mosquitto MQTT broker and 
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subscribes to [tapi/streaming] topic to receive asynchronous notifications. 
The initial synchronization happens at startup, after the network has been 
discovered which takes O(6s), namely:  5 seconds for network discovery 
(with the corresponding OpenConfig and OpenROADM messages), and 
around 900 ms involving the sending of ~40 MQTT publish messages. The 
initial synchronization forwards to the PCE/DT relevant information, such 
as network topology and supported operational modes as reflected in the 
figure 

 
Fig.  Wireshark capture of the initial MQTT synchronization 

Status, 
availability, 
repository 

CTTC and CNIT software with proprietary license.  
Relies on Cisco / Tail-F ConfD framework. 
 

Additional 
Remarks 
 

Full paper with performance details: [Cas24b] 
 

 

3.10 SONIC-BASED PACKET OPTICAL NODE (CNIT) 
Component Name: SONiC-based packet optical node 
 
Summary SONiC has been used as network operating system (NOS) of packet-

optical white-box nodes and extended with some components 
(illustrated in green in the architectural figure) to enable the integration 
with other B5G-OPEN components: (1) docker container running the 
OpenConfig agent (CNIT version) to control external transponders, local 
coherent transceivers, and IP interfaces; (2) REST-based APIs enabling 
the control of coherent transceivers, Ethernet/IP interfaces and routing 
processes; (3) exporter/adapter of monitoring information from SONiC 
system and transceivers to the telemetry server. 
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Description 
and  
Internal 
architecture of 
the 
component 

 
Interface  
Specification 

The SONic-based packet-optical node integrates with the following 
elements: 

 To SDN optical controller: the OpenConfig agent exposes a 
YANG-based model to the SDN optical controller that will be 
consumed through NETCONF. 

 To SDN packet controller: the OpenConfig agent exposes a 
YANG-based model to the SDN packet controller to be consumed 
through NETCONF, that can be used to configure IP interfaces. In 
addition, the SDN packet controller can directly access the REST-
based interface using RESTCONF.  

 To telemetry manager: the telemetry agent communicates with 
the telemetry manager adopting a client Redis adapter, 
exploiting a Pub/Sub mechanism, injecting the data with the 
proper format to the remote Redis DB. 

 From the agent to REST-based APIs: (1) the OpenConfig agent 
interacts with the REST APIs to read and write the pluggable 
coherent transceivers configuration, to configure Ethernet/IP 
interfaces and setup BGP adjacency; (2) the OpenConfig agent is 
also enabled to interact with external coherent modules to 
enable the control of experimental transceivers; (3) the 
telemetry agent interacts with the REST APIs to retrieve 
monitoring information via local Redis DB.  
Following a capture of the REST API swagger is shown with the 
configuration registered paths. 
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 The REST APIs interacts with the SAI/SDK and CMIS/C-CMIS to 

perform the configuration of pluggable coherent transceivers 
Functional 
Validation 

The tests performed to validate the component are the following: 
 

 Startup of the SONiC NOS and loading of initial data correctly 
performed. Validate basic functionalities such as: the 
Performance Monitoring (pmon), the REDIS database, the 
CMIS/C-CMIS APIs, the SAI/SDK APIs. 
 

 Deployment of each considered containers and perform 
functional validation inside the SONiC environment. Executed 
without significant degradation with respect to the test already 
executed for the validation of each component.  

 
 For such containers using the SONiC APIs, configuration requests 

received from the upper layers (e.g., the SDN optical controller) 
are correctly translated in a node configuration (e.g., the tuning 
of a coherent pluggable on a specified wavelength). 
 

 Multi-layer traffic switching: packet traffic incoming on packet 
interfaces is correctly routed through coherent modules.   
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The figure illustrates an experimental deployment including two SONiC 
switches, and other devices. Specifically, the packet controller based on 
ONOS (on the left) is connected to the SONiC switches using the 
OpenConfig agent. During the experiment the optical coherent 
transceivers have been configured several times using different 
configuration parameters, successfully validating the components 
deployed on the SONiC switches. 
 

Component 
Integrations  
 
 
 
 
 
 

Other components this component is integrated with: 
 

 SDN optical controller 
 SDN packet controller 
 Network orchestrator 
 Telemetry manager.  

 

Component 
KPIs 

 Time required at the data layer for enforcing a modification of 
the central frequency of the optical coherent transceivers, has 
been measured using ZR and ZR+ transceivers: 

 
 The spectrum width required to preserve the quality of 

transmission of a 400 Gbps channel with 16-QAM modulation 
format has been evaluated in experimental measures: 
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Status, 
availability, 
repository 

CNIT software with proprietary license. 

Additional 
Remarks 
 

Detailed functional and KPI evaluation can be found in [Sga24] 
 

 

3.11 AI/ML MODELS FOR PSD AND POWER MANAGEMENT (NOKIA) 
Component Name: Automatic power correction 
 
Summary The desired performance is defined as a compromise between linear and 

nonlinear contributions. It is the so-called nonlinear threshold which is 
operating in the weakly nonlinear regime. Monitoring ASE and NL signal 
to noise ratios is quite complex in a live network and has some limitations 
which make this problem attractive for artificial neural networks (ANN). 
The optical spectrum contains knowledge regarding linear and nonlinear 
impairments specifically the shape is different if operating in linear or 
nonlinear regime. In addition, the SNR-induced fluctuations from the 
polarisation dependent loss (PDL) also show a pdf with a different shape 
in linear and nonlinear regimes. Therefore, we can use either of these 2 
shapes at the input of the ANN to get an optimal power correction to be 
applied.  

Description 
and  
Internal 
architecture of 
the 
component 

ANN for power monitoring architecture 
For a given lightpath, the neural network takes as input normalized 
power spectral density (PSD) or PDL-induced SNR fluctuation PDF vector 
and returns as output an estimated power correction (∆𝑃 ). It works with 
AI/ML and uses an ANN with 1 hidden layer with 10 neurons and 1 output 
layer with 1 neuron. A neuron is a sequence of two operations: a 
weighted sum followed by a nonlinear manipulation. It is a fully 
connected ANN meaning that all neurons of the following layer take as 
input all neurons from the preceding layer. The hidden layer employs 
sigmoid function and the output layer uses the identity function.  
We use pre-processing to normalize the PSD or PDF in the range [0, 1].  
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Interface  
Specification 

The PSD component will be used as a standalone component. It is 
integrated with an optical mesh network and telemetry database, as 
shown in the figure below.  

 
 
In the figure, the green and pink lightpaths are leveraging the PSD 
component to optimize their performance. Each of them has the 
following workflow. First the optical PSD is measured in the optical node 
and sent to the node agent, responsible for communicating with the 
control & management plane to (re)-configure optical nodes (here 
transponder launch powers) and feed the telemetry database via a gRPC 
/ gNMI interface. Then the PSD component pre-processes the PSD to 
normalize it and optionally compress it to a given format, feeds the ANN 
with the resulting PSD and obtains estimated power correction for each 
ligthpath. These estimated power corrections are stored in a power 
manager and can be used as recommendations to reconfigure the optical 
nodes.   
 

Functional 
Validation 

Tests done to validate the component 
- Generate a set of measurements (different powers, lengths, …) 

to feed the database for training, validation and testing of the 
neural network.  

- Evaluate the error between known optimal powers and new 
estimated powers  

- Assess the SNR gain obtained after applying power corrections 

 
Component 
Integrations  
 

This component is integrated with a physical layer testbed to be able to 
collect measurements. This is needed to build a database used for 
training, validation and test of the PSD component.  
 

Component 
KPIs 

 Gain/loss of performance: We measure the SNR gain/loss after 
power corrections for both PSD and PDF shapes as input feature. 
We show in the figure below the results for the PSD shape. The 
SNR gain after correction is 0.5 dB for 1dB power correction. On 
one had we can slightly lose close to the optimal power a 0.15dB, 
but in the other hand, we can win 1dB for 2.5dB power 
correction.   
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In a later work, we proposed to use the PDF shape as input features. 
We show similar trends in the measurement of SNR gain/loss after 
power corrections as with the PSD shown in the top figure below. 
We can observe a 0.3dB gain for 1dB power corrections. Note that 
the two figures cannot be compared as the transmission parameters 
are not the same, notably in the second case, PDL impairments is 
accounted for. 

 
 Compression rate: evaluate the minimum number of points 

required in optical PSD / PDF to get a given accuracy. We 
investigated the scalability of the component. First, we compress 
the input PSD by taking fewer points equally spaced. We 
investigated 3 different configurations with either 20, 100 and 
315 input PSD points. As a figure of merit, we defined the error 
as the different between the true power and the predicted 
output power. We plot in the figure below the standard 
deviation of the error as a function of the number of input PSD 
points. As expected, when the number of PSD points is low, the 
standard deviation increases. For 20 PSD points, the error 
standard deviation is 1.67dB while for 315 PSD points it can 
decrease down to 0.41 dB. To maintain a reasonable 
performance, we can go down to 100 PSD points which gives 1dB 
error standard deviation for the investigated line configurations.
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Second, we compress the input of the PDF shape by either taking 
fewer points or by cutting the PDF tails. We notice that the 
accuracy is almost constant when we decrease the number of 
points (#bins). However, when we cut the tails (when Plim  1) 
we start to degrade the performance. Both compressing 
techniques are shown in the plot below.  

 
Status, 
availability, 
repository 

We developed two components leveraging AI/ML models for power 
optimisation with either power spectrum density (see D4.2) or PDL-
induced SNR fluctuations (see D4.3). We proposed low complexity 
implementation for both by evaluating the minimum number of inputs 
required. And we tested their performance accuracy.  
It is completed and available as a Nokia proprietary Matlab toolbox.  
 

Additional 
Remarks 
 

No contribution to standard 
 

 

3.12 TELEMETRY SYSTEM (UPC) 
Component Name:  
 
Summary Several telemetry architectures are available. In general, telemetry data 

is collected from observation points in the devices and send to a central 
system running besides the SDN controller. Although protocols 
specifically devised for telemetry, like gRPC, compress data, the amount 
of data that can be collected and the frequency of collection make those 
architecture not practical. 
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Our distributed telemetry system integrates measurements and event 
data collection and supports intelligent data aggregation nearby data 
collection, so agents receive and analyse measurements before sending 
to a centralized manager. 
 

Description 
and  
Internal 
architecture of 
the 
component 

The figure presents the reference network architecture with distributed 
telemetry. An SDN architecture controls a number of optical nodes, 
e.g., optical transponders and reconfigurable optical add-drop 
multiplexers, in the data plane. A centralized telemetry manager is in 
charge of receiving, processing and storing telemetry data in a 
telemetry database (DB). Typically, the telemetry manager runs inside a 
Monitoring and Data Analytics (MDA) system. 
Some data exchange between the SDN control and the telemetry 
manager is needed, e.g., the telemetry manager needs to access the 
topology DB describing the optical network topology, as well as the DB 
describing the lightpaths. 

 
Every node in the data plane is locally managed by a node agent, which 
translates the control messages received from the related SDN controller 
into operations in the local node and exports telemetry data collected 
from observation points (labelled M) enabled in the optical nodes. In 
addition, events can be collected from applications and controllers 
(labelled E). Telemetry agents run inside node agents and provide the 
needed services for intelligent algorithms based on Artificial Intelligence 
(AI) techniques to process collected telemetry measurements. 
Internally, both, the telemetry agent and manager are based on three 
main components: i) a manager module configuring and supervising the 
operation of the rest of the modules; ii) a number of modules that 
include algorithms, e.g., data processing, aggregation, etc. and 
interfaces, e.g., gRPC; and iii) a Redis DB that is used in publish-subscribe 
mode to communicate the different modules among them. This solution 
provides an agile and reliable environment that simplifies 
communication, as well as integration of new modules. A gRPC interface 
is used for the telemetry agents to export telemetry to the telemetry 
manager, as well for the telemetry manager to tune the behavior of 
algorithms in the agents. 
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Interface  
Specification 

A detailed architecture of the proposed telemetry system is presented in 
the next figure, where the internal architecture of telemetry agents 
inside node agents and the telemetry manager is shown. 

 
Let us describe a typical telemetry workflow valid for a wide range of use 
cases. The node agent includes modules (denoted data sources) that 
gather telemetry data from observation points in the optical nodes. 
Examples include optical spectrum analysers (OSA) in the ROADMs and 
data from digital signal processing, e.g., optical constellations, in the TPs. 
A telemetry adaptor has been developed, so data sources can export 
collected data to the telemetry system; specifically, the adaptor receives 
raw data from the data source and generates a structured json object, 
which is then published in the local Redis DB (labelled 1 in the figure). 
The periodicity for data collection can be configured within a defined 
range of values. A number of algorithms can be subscribed to the 
collected measurements. In this example, let us assume that only one 
algorithm is subscribed, which processes the measurements locally. Such 
processing might include doing: i) no transformation on the data (null 
algorithm); ii) some sort of data aggregation, feature extraction or data 
compression; or iii) some inference (e.g., for degradation detection). The 
output data (transformed or not) are sent to a gRPC interface module 
through the Redis DB (not shown in the figure) (2), which conveys the 
data to the telemetry manager. Because gRPC requires a previous 
definition of the data to be conveyed, our implementation encodes the 
received data in base64, which allows generalization of the telemetry 
data to be conveyed. Note that, although such encoding could largely 
increase the volume of data to be transported, intelligent data 
aggregation performed by telemetry agents could reduce such volume 
to a minimum. 
In the telemetry manager, the data are received by a gRPC interface 
module that publishes them in the local Redis DB, so subscribed 
algorithms can receive them. The algorithms in the telemetry manager 
can implement functions related to data aggregation, inference, etc. 
Once processed, the output data is published in the local Redis DB (4) 
and can be stored in the telemetry DB (5) and/or be exported to external 
systems (6). Interestingly, algorithms in the telemetry manager can 
communicate with those in the telemetry agents using the gRPC 
interface (7-8). Examples of such communication include parameter 
tuning, among others. 
 



 D4.4 GA Number 101016663 
 

64 
 

Functional 
Validation 

Tests done to validate the component: 
- We generated measurements using the data source and the 

telemetry adaptor and verified that: 1) they are received by the 
selected algorithm in the telemetry agent; and 2) they are sent 
to the telemetry manager and stored in the measurements DB. 

- We generated events with the SDN controller and verify that 
they are stored in the events DB. 
 

Component 
Integrations  
 
 
 
 
 
 
 

The Telemetry system integrates with any data source provided that they 
implement the telemetry adaptor. Examples of data sources for 
measurements are transponders, ROADMs, and OSAs. Examples of data 
sources for events are controllers and agents. The telemetry manager 
integrates also with any other management system using external 
delivery systems, like Kafka. 
 
The Telemetry system was been demonstrated in OFC 2023 [Gon23b], 
where we showed integration with network devices from Nokia and 
ADVA, as well as with the CTTC’s SDN controller. 
 

Component 
KPIs 

Each constellation sample includes 2048 symbols from a 16-QAM optical 
signal and has a size of 16,384 bytes.  

1. Autoencoder: Trained for the maximum compression that 
produces a reproduction error < 2%, which results in vectors Z of 
size 32 bytes. Vectors Z are output as JSON objects, where each 
component is represented with 11 characters, and then 
compressed, which resulted in 607 bytes. 
When the message arrives at the telemetry manager through the 
gRPC interface, it is used as input to the decoder that generates 
a sample X*, which is finally stored in the telemetry DB. In our 
tests, both, data encoding and decoding took 60 ms 

2. Supervised feature extraction: the algorithm in the telemetry 
agent applies GMM fitting to every constellation sample X 
received and generates outputs of m = 16 vectors with 5 features 
each. This process, outputs a JSON object with 1,159 characters, 
which is then conveyed through the gRPC interface using 1,545 
bytes. 
 

Status, 
availability, 
repository 

The pseudocode of the algorithms together with a thorough description, 
and the performance evaluation has been reported in D4.3. 
An example of data source has been made available to the project’s 
partners and it was used for the OFC 2023 demonstration [Gon23b].  
The performance evaluation is available in [Vel23a] and [Gon23a] 
 

Additional 
Remarks 
 

No contribution to standard/open source 

 



 D4.4 GA Number 101016663 
 

65 
 

3.13 FLEXTELEMETRY AGENT (ADTRAN) 
Component Name: Adtran FlexTelemetry agent 
 
Summary Flex-Telemetry is an application that periodically requests and collects 

performance measurements from optical transport network devices. It 
utilizes NETCONF and supports both open (OpenConfig) and proprietary 
data models to ensure comprehensive data collection. The program 
features a modular plugin system that provides a Northbound Interface 
(NBI), capable of delivering stable telemetry streams to various 
mediums, including time-series databases, in-memory databases, and 
International Data Spaces (IDS). This modular approach allows Flex-
Telemetry to seamlessly integrate with diverse data storage and 
processing systems, facilitating efficient, scalable access to performance 
data across different platforms. 
 

Description 
and  
Internal 
architecture of 
the 
component 

The FlexTelemetry Agent is a Python-based application designed to 
collect and stream telemetry data from multiple network devices in real-
time. It uses NETCONF for general telemetry data collection and SNMP 
specifically for amplifier data. The collected telemetry data can be sent 
to various northbound interfaces, such as Redis, Apache Kafka, MQTT 
(Mosquitto), and InfluxDB, providing a flexible and scalable solution for 
monitoring and analyzing performance metrics. The agent supports a 
range of devices, including optical transponders, Carrier Ethernet 
switches, and optical amplifiers, making it versatile for different network 
environments. 
One of the core features of the FlexTelemetry Agent is its integration 
with Telegraf for real-time data handling. When data is sent to message 
brokers like Kafka and MQTT, the agent automatically spawns a Telegraf 
instance that collects and routes the metrics to InfluxDB. This enables 
applications needing real-time data—such as machine learning models—
to access performance data immediately, while historical data is stored 
in a time-series database for later analysis, supporting both real-time and 
retrospective analytics.  
The FlexTelemetry agent was successfully tested in the OFC 2023 demo.  
The KPIs to measure the saleability and performance of the 
FlexTelemetry agent are the minimum time interval between reads and 
number of supported parameters/devices with different SBI drivers and 
NBI plugins. 

Interface  
Specification 

The agent uses NETCONF and SNMP in the southbound to retrieve the 
data from the devices in the data plane. 
The agent exposes various output plugins in the north bound including 
InfluxDB, kafka, MQTT and Redis for data collection and processing.  
. 

Functional 
Validation 

Tests done to validate the component: 
- Tested data retrieval and exposure of all the plugins on the real 

network devices deployed in the lab. 
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Component 
Integrations  
 
 
 
 
 

The FlexTelemetry agent integrates with a data analytics pipeline using 
Kafka, Redis, or direct time-series database interface like InfluxDB. In 
B5G-OPEN, the FlexTelemetry agent acts as a Telemetry Adaptor and 
interfaces to the Telemetry architecture using Redis. Examples of data 
sources for measurements are transponders, ROADMs, and inline 
amplifiers.  
The FlexTelemetry agent has been demonstrated in OFC 2023 [Gon23b], 
where we showed integration with the Telemetry manager from UPC. 

Component 
KPIs 

 

Status, 
availability, 
repository 

The pseudocode of the algorithms together with a thorough description, 
and the performance evaluation has been reported in D4.3. 
An example of data source has been made available to the project’s 
partners and it was used for the OFC 2023 demonstration [Gon23b].  
 

Additional 
Remarks 
 

No contribution to standard/open source 

 

 

3.14 MESARTHIM – FAILURE MANAGEMENT USING A SNR DIGITAL TWIN (UPC) 
Component Name: MESARTHIM 
 
Summary The performance of optical devices can degrade because of aging and 

external causes like, for example, temperature variations. Such 
degradation might start with a low impact on the Quality of Transmission 
(QoT) of the supported lightpaths (soft-failure). However, it can 
degenerate into a hard-failure if the device itself is not repaired or 
replaced, or if an external cause responsible for the degradation is not 
properly addressed. 
MESARTHIM compares the QoT measured in the transponders with the 
one estimated using a QoT tool. Those deviations can be explained by 
changes in the value of input parameters of the QoT model representing 
the optical devices, like noise figure in optical amplifiers and reduced 
Optical Signal to Noise Ratio in the Wavelength Selective Switches. 
By applying reverse engineering, MESARTHIM estimates the value of 
those modelling parameters as a function of the observed QoT of the 
lightpaths. 
 

Description 
and  
Internal 
architecture of 
the 
component 

The optical layer consists of a disaggregated set of ROADMs and TRXs, 
and a set of optical links with a number of In-Line OAs interconnecting 
ROADMs. The control plane includes: i) a Network Controller to program 
the network devices; and ii) a Monitoring and Data Analytics (MDA) 
system that includes the telemetry system in charge of collating 
measurements from the data plane, analyses the data and issues 
recommendations to the network controller, as well as notifications 
regarding failures. The MDA system stores a replica of the operational 
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databases (DB) that are synchronized from the network controller. A QoT 
digital twin based on GNPy that estimates the SNR of the lightpaths is 
used for connection provisioning and for failure analytics. In addition, it 
collects measurements from the optical devices with a given periodicity 
and stores them in a TelemetryDB. These measurements are used by 
MESARTHIM to: i) estimate those modeling parameters related to optical 
devices (resources); ii) analyze the evolution of the measured SNR and 
that of the modeling parameters to detect any degradation as soon as it 
appears; and iii) determine the severity of the degradation based on the 
foreseen impact on the performance of the lightpaths. 
 
The figure next sketches the MESARTHIM methodology implemented in 
the MDA system. 
 

 
 
Specifically, the following building blocks can be identified: (1) the 
Surveillance block that analyses the SNR measurements and the value of 
modelling parameters to detect any meaningful degradation (e.g., by 
threshold crossing); (2) the Localization block that localizes the soft-
failure; (3) the “Find Modelling Configuration” block that finds the most 
likely value of the modelling parameters of a given resource, so it results 
into SNR values of the lightpaths being supported by such resources 
similar to those that have been actually measured; (4) the soft-failure 
Identification block that, assuming a resource has been localized as the 
source of the soft-failure, finds what is the modelling parameter 
responsible for such failure; and (5) the Severity Estimation block that 
estimates whether and when the soft-failure will degenerate into a hard-
failure. In addition, two internal repositories are used: i) the Device 
Modelling Config DB with the evolution of the value of modelling 
parameters along time for every resource; and ii) the Network Diagnosis 
DB that stores historical data for analysis purposes. The MESARTHIM 
manager coordinates those blocks to achieve intelligent QoT analysis. 
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Interface  
Specification 

MESARTHIM runs as part of the MDA, and it can access: 
- the telemetry measurements DB to analyse constellation 

samples 
- the Operational DB to get the route of the lightpaths. 
- the QoT tool 

Functional 
Validation 

Tests done to validate the component: 
- The Find Modeling Configuration has been evaluated experimentally 

in the testbed in collaboration with CNIT. 
- A simulation environment was used to validate and assess the rest 

of the components over a German-like network scenario. The optical 
data plane was simulated by a GNPy instance. We generated SNR 
measurements for every lightpath by varying every modelling 
parameter of every intermediate OAs and A/D WSSs in the ROADMs 
in the network, independently. 

- The resulting samples were stored in the simulated control plane 
and fed the module implementing the MESARTHIM methodology. 

Component 
Integrations  

This component is integrated in an MDA system and with the telemetry 
system, which provides measurements.  
 

Component 
KPIs 

- Find Modeling Configuration block R2 > 0.98 
- Anticipation of soft failures > 15% through the estimation of 

modelling parameters w.r.t. SNR analysis. 
- Relative average error of the modelling parameters estimation < 8%  
- Severity estimation anticipation > 40% 
-  

Status, 
availability, 
repository 

The pseudocode of the algorithms together with a thorough description 
has been reported in D4.3 and [Vel23b]. 
The performance evaluation has been reported in D4.3. 
 

Additional 
Remarks 
 

No contribution to standard/open source 

 

3.15 OCATA  - DIGITAL TWIN FOR THE OPTICAL TIME DOMAIN (UPC) 
Component Name:  
 
Summary The development of Digital Twins to represent the optical transport 

network might enable multiple applications for network operation, 
including automation and fault management. 
OCATA is a deep learning-based digital twin for the optical time domain 
that is based on the concatenation of deep neural networks (DNN) 
modelling optical links and nodes, which facilitates representing 
lightpaths. The DNNs model linear and nonlinear noise, as well as optical 
filtering. Additional DNN-based models extract useful lightpath metrics, 
such as lightpath length, number of optical links and nonlinear fibre 
parameters. OCATA exhibits low complexity, thus making it ideal for real-
time applications. 
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Description 
and  
Internal 
architecture of 
the 
component 

We assume disaggregated optical networks, with transponders, 
ROADMs and optical amplifiers from multiple vendors and assume that 
information regarding the network topology, the type of fibres, etc., as 
well as the configuration and monitoring data from every optical 
component is accessible. 
In this scenario, a lightpath from site A to site Z can be modelled by 
concatenating models for the different components supporting such 
lightpath, i.e., transponders, ROADMs, and optical links, where output IQ 
optical constellation features of one component model are the input 
features of the following one. 
 

 

 
 
Every component model modifies the input features according to the 
noise that the specific physical network component introduces. 
Specifically, a transmitter (Tx) model generates the initial constellation 
features following a Tx configuration. Then, models for ROADMs and 
optical links are concatenated in the same order that the respective 
network components appear in the route of the lightpath. 
To minimize complexity and ensure component model availability at 
lightpath provisioning time, such models are trained beforehand using 
datasets collected from the network and/or coming from simulation. 
Then, at provisioning time, the specific concatenated model for the 
lightpath is created by selecting trained component models for the 
network components in the route of the lightpath, from a model 
database. Finally, to reduce complexity even more, only the features of 
a few selected constellation points are propagated. Consequently, a 
constellation reconstruction (CR) module generates the features of the 
non-propagated constellation points based on the received features to 
complete the IQ optical constellation. If the models are accurate enough, 
the features of constellation samples collected from the optical 
transponder in Z would match the expected optical constellation 
features obtained with OCATA. 
 

Interface  
Specification 

OCATA runs as part of the network control, and it access: 
- the telemetry measurements DB to analyse constellation 

samples 
- the LSP DB to get the route of the lightpaths 
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The results of the analysis are stored in an internal DB and used for 
algorithms in the SDN controller. 
 

Functional 
Validation 

- Verify that OCATA gets the route of the right lightpath from the 
LSP DB 

- Verify that OCATA gets the right constellation samples from the 
telemetry DB 

- Verify that OCATA determines the lightpath length and 
compares to that stored in the LSP DB.  
 

Component 
Integrations  

This component has been integrated with the telemetry system, which 
provides measurements of optical constellations. 
 

Component 
KPIs 

Numerical evaluation: A simulator of a digital coherent system 
implemented in MATLAB was employed to reproduce scenarios and 
generate datasets. OCATA DNN models were trained used the generated 
dataset. The considered scenario consisted of a lightpath passing 
through 8 ROADMs and a total fibre length of 1,120 km. 

- Evaluation of the supervised feature-extraction-methodology-
based on GMM fitting. We found that constellation points can 
be accurately modelled as Gaussian distributions for all the 
considered distances, since the obtained p-value of the test 
always exceeded the commonly accepted significance level of 
0.05. 

- For lightpath modelling we obtained negligible errors for 
features μ (max error < 2%) independently of the link length, 
whereas max error for σ features was is around 30% for low σ 
values although it decreases when the path length increases, 
becoming under 15%, which is, in general, a good enough 
performance to validate the models. 

- The reconstruction of the features of the non-selected 
constellation points showed an accuracy of 97%. 

- Lightpath length analysis showed average error for lightpath 
estimation < 5% for lightpaths over 500Km and average error for 
estimation of number of hops of the lightpath < 5%. 

- Algorithms for failure detection based on OCATA are able to 
detect filter related failures under non-ideal network conditions 
in few hours after the degradation starts and achieved 
anticipation of more than one day before the hard-failure. 

Experimental evaluation: The models were evaluated using 
experimental measurements and showed that the Euclidean distance 
comparing features from experimental and OCATA IQ constellation 
samples is below 0.1 in all the cases and the maximum relative error on 
the average σ features after different number of spans is below 14%. 
 

Status, 
availability, 
repository 

The pseudocode of the algorithms together with a thorough description, 
and the performance evaluation has been reported in D4.3. 
The main methodology is available in [Rui22]. Algorithms have been 
experimentally assessed in collaboration with HHI and INF [Dev23a]. 
Applications have been developed for failure management in [Dev23b] 
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Additional 
Remarks 
 

No contribution to standard/open source 
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