

General Business

Deliverable D4.4

Software release of different
components

Editor C. Matrakidis (OLC-E)

Contributors TID, UC3M, TIM, CTTC, INF-P, NBLF, CNIT, CNR, UPC,
OLC-E, ELIG, PLF

Version 1.0

Date July 31, 2024

Distribution PUBLIC (PU)

Ref. Ares(2024)7907884 - 07/11/2024

 D4.4 GA Number 101016663

DISCLAIMER

This document contains information, which is proprietary to the B5G-OPEN (Beyond 5G – OPtical
nEtwork coNtinuum) consortium members that is subject to the rights and obligations and to
the terms and conditions applicable to the Grant Agreement number 101016663. The action of
the B5G-OPEN consortium members is funded by the European Commission.

Neither this document nor the information contained herein shall be used, copied, duplicated,
reproduced, modified, or communicated by any means to any third party, in whole or in parts,
except with prior written consent of the B5G-OPEN consortium members. In such case, an
acknowledgement of the authors of the document and all applicable portions of the copyright
notice must be clearly referenced. In the event of infringement, the consortium members
reserve the right to take any legal action it deems appropriate.

This document reflects only the authors’ view and does not necessarily reflect the view of the
European Commission. Neither the B5G-OPEN consortium members as a whole, nor a certain
B5G-OPEN consortium member warrant that the information contained in this document is
suitable for use, nor that the use of the information is accurate or free from risk, and accepts no
liability for loss or damage suffered by any person using this information.

The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its sole
risk and liability.

 D4.4 GA Number 101016663

REVISION HISTORY

 0.2 October 28, 2024 Lutz Rapp Quality Check

 1.0 November 07, 2024 WPL Approval

Revision Date Responsible Comment

0.1 October 10, 2024 Chris Matrakidis First Release

 D4.4 GA Number 101016663

LIST OF AUTHORS
Partner ACRONYM Partner FULL NAME Name & Surname

TID Telefonica I+D Oscar González de Dios

UC3M Universidad Carlos III
de Madrid

José Alberto Hernández, Alfonso
Sánchez-Macián, Gonzalo Martínez

TIM Telecom Italia Roberto Morro

CTTC Centre Tecnològic de
Telecommunicacions

de Catalunya

Ramon Casellas, Laia Nadal, Michela Svaluto
Moreolo, Fco. Javier Vilchez, Ricardo

Martinez

CNIT CNIT Filippo Cugini

CNR CNR Alessio Giorgetti

ELIG E-lighthouse Network
Solution

Pablo Pavón Mariño, Enrique Fernández
Sánchez, Francisco Javier Moreno Muro

NBL Nokia Bell Labs Fabien Boitier, Patricia Layec, Petros
Ramantanis, Isaia Andrenacci

 UPC Universitat Politecnica
de Catalunya

Luis Velasco, Marc Ruiz, Jaume Comellas,
Salvatore Spadaro, Davide Careglio, Josep

Prat, Morteza Ahmadian

Adtran Adtran Networks SE Achim Autenrieth, Nikhil Dsilva, Vignesh
Karunakaran, Jasper Müller

OLC-E OpenLightComm
Europe s.r.o.

Alexandros Stavdas, Evangelos Kosmatos,
Chris Matrakidis

PLF pureLiFi Ltd Rui Bian

INF-P Infinera Unipessoal
Lda

João Pedro

António Eira

 D4.4 GA Number 101016663

GLOSSARY
Acronyms Description Acronyms Description

5G Fifth Generation OMS Optical Multiplex Section
6G Sixth Generation ONF Open Networking Foundation
AI Artificial Intelligence ONOS Open Network Operating System
AP Access Point ONU Optical Network Unit
API Application Programming Interface ONP Open Network Planner

ASIC Application Specific Integrated Circuit OPCE Optical Path Computation Element
B5G Beyond 5G OptC Optical Controller

B5G-ONP Beyond 5G - Open Network Planner OSA Optical Spectrum Analysers

BBF Broadband Forum OSNIR
Optical Signal-To-Noise plus

Interference Ratio
BGP Border Gateway Protocol OSNR Optical Signal-To-Noise Ratio
CD Chromatic Dispersion OSPF Open Shortest Path First
CLI Command Line Interface OSS Operation Support Systems

CMIS
Content Management

Interoperability Services
OTS Optical Transport Section

DB Database OTSi Optical Tributary Signal
DNN Deep Neural Network P2MP Point-To-MultiPoint
DSP Digital Signal Processing PCE Path Computational Engine
DSR Digital Signal Rate PckC Packet Controller
E2E End-To-End PDL Polarisation Dependent Loss
FEC Forward Error Correction PDF Probability Density Function

gNMI
gPRC Network Management

Interface
PL Physical Layer

gRPC gRPC Remote Call Procedure PLA Physical Layer impairment Aware
GUI Graphical User Interface PLI Physical Layer impairment
HrC Hierarchical Controller PMD Polarisation Mode Dispersion

HTTP Hypertext Transfer Protocol PON Passive Optical Network
IBN Intent-Based Networking PSD Power Spectral Density
IDS International Data Spaces QoE Quality of user Experience
IETF Internet Engineering Task Force QoS Quality of Service
IGP Interior Gateway Protocol QoT Quality of Transmission
IP Internet Protocol REST Representational State Transfer

IPoWDM IP over WDM RMSA
Routing, Modulation and Spectrum

Assignment

IS-IS
Intermediate System to Intermediate

System
ROADM

Reconfigurable Optical Add/Drop
Multiplexer

IT Information Technology RPC Remote Procedure Call

ITU
International Telecommunication

Union
RSA Routing and Spectrum Assignment

JSON JavaScript Object Notation SAI Switch Abstraction Interface
K8s Kubernetes SBI Southbound Interface

 D4.4 GA Number 101016663

KPI Key Performance Indicator SDK Software Development Kit
LiFi Light Fidelity SDN Software Defined Networking

LKM Loadable Kernel Modules SIP Service Interface Point
LLDP Link Layer Discovery Protocol SMA Spectral and Modulation Assignment

LSP Label Switched Path SNMP
Simple Network Management

Protocol
MB Multi-Band SNR Signal-To-Noise Ratio

MDA Monitoring and Data Analytics SONiC
Software for Open Networking in the

Cloud
ML Machine Learning SSH Secure Shell

 SSID Service Set Identifier
MPLS Multiprotocol Label Switching TAPI Transport API

MQTT
Message Queuing Telemetry

Transport
TDM Time Division Multiplexing

NBI North Bound Interface TLS Transport Layer Security
NF Noise Figure TP Transponders

NOS Node Operating System Tx Transmission
O/E/O Optical to Electrical to Optical WDM Wavelength Division Multiplexing

OA Optical Amplifier WiFi Wireless Fidelity
OCH Optical Channel WP Work Package
ODN Optical Distribution Network WRN Wavelength Routed Network
OIF Optical Internetworking Forum XGS Symmetric 10G-PON
OLS Open Line system XML Extensible Markup Language

OLT Optical Line Terminal XR Optics
Infinera Technology for point to muti-

point optics
OMB Optical Multi-Band YANG Yet Another Next Generation

 D4.4 GA Number 101016663

EXECUTIVE SUMMARY
This deliverable reports the high-level description of the software and sub-components
implemented for B5G-OPEN. This is presented in two parts, a summary of the key elements of
the architecture and tables for the sub-components, showing their status, availability and other
information.

Specifically, the document summarizes the Infrastructure Control and Service Management
platform architecture implemented in the B5G-OPEN Control, Orchestration and Telemetry
System (referred to as the control plane, for short). The key aspects of the architecture are:

 Multi-Band operation: Provision services using available bands out of the O-, E-, S-, C-,
L-band in optical fibres.

 Optical continuum: Allow optical slicing based on service requirements and crossing
network segments (i.e. access, metro, core, etc.)

 Integrated access: Operate and control service regardless of the access technology
(Mobile, Fixed, WiFi, LiFi)

 E2E network orchestration: Operate service and network operations from the Access
Point to the Cloud node, which may include monitoring and AI/ML

 Autonomous operation: Based on Intent-based and zero-touch networking paradigms,
autonomous operation is built using closed-control loops at various levels, from device
to network.

The major parts of the architecture include: service orchestration and planning, packet optical-
integration systems, telemetry and intent-based networking. As presented in D4.1, the main
control plane innovations are:

- [multiband control] Control of optical multi-band network, this means being able to
exploit the multiband capabilities of optical devices such as transmission or switching.

- [transparent multi-domain, domain-less] The ability to setup connections in a
transparent manner, across multiple domains and network segments.

- [Packet/optical integration] Moving forward from current hierarchical architectures for
the SDN control plane of the control plane that consider the IP/MPLS layer largely
decoupled from the control plane of the optical layer

- [physical layer impairments, PLI] Accounting for PLI is critical to efficiently plan and
operate optical networks and high data rates, with increasing non-linear effects.

- [telemetry] The scope of the SDN extends to optical monitoring and telemetry, a key
enabler for advanced functions such as autonomous/autonomic networking via
hierarchical and coordinated closed loops.

- [external planning tools] Planning tools, including QoT estimators or path computation
and validation systems need efficient access (in terms of retrieval, storage and
processing) to collected and managed data.

- [network automation] Aspects related to automation, zero touch networking and Intent
Based Networking (IBN) are developed in the areas of service deployment, network
planning and overall network operation.

The interfaces for such a modular architecture, which must rely on standard and open interface
definitions between the control plane functions and towards the devices. Those were presented
in D4.2 together with components required for the service orchestration and infrastructure

 D4.4 GA Number 101016663

control system. Similarly, the generic telemetry platform enabling straightforward adaptations
of devices or systems as data sources was defined.

The presentation of this work is concluded in the second part of this document, where the final
status of each component is described. This is summarized in the following table that provides
the list of components that have been implemented and the key performance indicators for
each one.

Component Partner Purpose
B5G-ONP ELIG The B5G-OPEN Optical Network Planner (B5G-ONP) component

orchestrates both IT and network resources. Within the B5G-OPEN
project, the B5G-ONP serves as the hub and provides design,
optimization, and planning tools to deploying, managing, and
configuring services and resources.

The KPIs measured are:
1. Topology Discovery Time, the time elapsed from the moment a

network operator sends the finding command until all layer of
the topology is imported into B5G-ONP, with target values from
less than 5 seconds up to 30 seconds.
The average values measured were:
- TAPI Optical Network Orchestrator: 300 ms
- IP SDN Controller: 4 seconds
- Kubernetes Cluster: 2 seconds

2. Connectivity service provisioning latency, the time to provision
connectivity service starting when B5G-ONP receives a request
for it and ending when the service is properly established, with
target values of less than 10 minutes with hardware and less
than 1 minute with emulation.
The following mean baseline values were recorded:
- DSR provisioning: 237 ms
- OLS path provisioning: 110 ms
- IP BGP adjacency provisioning: 4 seconds
- Reconfiguring OLS path provisioning: 200-300 ms
- Kubernetes Deployment: 150 ms
- Kubernetes Service: 100 ms

3. Optical Path computation element latency, the time it takes to
perform a path and is directly proportional to the number of
network elements involved in the path computation and the
traffic load on the network.
Values measured in the project experiments:
- PCE: average of 200 ms
- Multiband-PCE: average of 600 ms, depending directly on

the time consumed by the MB-PCE when requesting the
optical context.

TAPI-enabled
Optical
Network
Orchestrator
with

CTTC The TAPI-enabled Optical Network Orchestrator is responsible for:
i) providing a uniform, open and standard view and interface to the
higher levels and components; ii) Composing a complete Context to
be consumed by B5G-OPEN network planner and additional
consumers combining information retrieved from subsystems and
sub-controllers; iii) Enabling a single entry point for provisioning

 D4.4 GA Number 101016663

externalized
Path
Computation

DSR and Photonic Media services, including externalized path
computation and iv) providing an event telemetry data source that
reports events that happen asynchronously in the network.

The KPIs measured are:
1. Service Provisioning Overhead – In terms of messages, message

size, encoding, etc. This includes a characterization of the
protocol overhead (e.g., HTTP, RESTCONF, etc).
Values measured in an experiment:
- Discovery context: 931 ms
- Single-domain provision: 309 ms
- Multi-domain provision: 515 ms

2. Path Computation Latency – measured as the time it takes to
perform a path computation with a dedicated PCE. This is to be
evaluated.
In different experiments the following values were obtained:
- PCE latency: 0.5 - 0.6 seconds
- MB-PCE: PCE latency :1.8 - 3.2 seconds

Multi-Band
Path
Computation
Engine (MB-
PCE)

OLC-E The Multi-Band Path Computation Engine (MB-PCE) is based on a
multi-band routing engine which ensures that: i) routing is
implemented by means of an efficient spectrum and modulation-
format assignment; and ii) the impact of physical layer effects over
the selected optical paths is estimated and the results are
benchmarked against QoT target values (BER, OSNIR, OSNR, etc).

The KPIs measured are:
1. Path Computation Latency, is the time it takes to MB-PCE to

compute the path of a new service request, with a target value
of < 40s.
- Several scenarios were executed. The MB-PCE Path

Computation Latency was measured to be in the range
between 1.8 – 3.2 seconds

2. TAPI Topology retrieval and parsing Latency, the time it takes

for MB-PCE to retrieve and parse the optical network topology
context, with a target value of < 20s.
- Several scenarios were executed. The MB-PCE Topology

retrieval and parsing Latency was measured to be in the
range between 0.9 – 2.5 seconds

ONOS Optical
Controller

CNIT The optical controller is based on the ONOS open-source project
[ONOS] that, besides the control of optical devices, also provides a
suitable environment for the control of packet devices (e.g., based
on OpenFlow or P4Runtime protocols).
The main roles of the optical controller in the B5G-OPEN project
are: (i) retrieve device descriptions from data plane and abstract
them toward the upper control layers; (ii) receive the service
configuration requests by the upper control layers and translate
such requests in a set of configuration messages to be forwarded to
each involved device.

 D4.4 GA Number 101016663

Set of component KPIs that have be measured during experimental
demonstrations:
1. Time required for network discovery:

- Measured in the order of tens of seconds, always lower
than one minute.

2. Physical activation delay for an optical intent:
- Measured in the order of one-two minutes mostly

depending on the utilized transceivers.
3. Time elapsed in the controller:

- Measured in the order of one second.
4. Time elapsed for configuration of devices:

- Devices typically confirm the reception of a configuration
message in the order of few hundreds of milliseconds.

Access
Controller /
PON
Controller

OLC-E The Access Controller is responsible for: a) monitoring the PON
network and receiving any requests for PON reconfiguration; b)
translating these requests into high level traffic requests that will
be reported to the B5G-ONP App; c) executing the appropriate
actions in the PON Controller in order to support the new requests.
In addition, the Access Controller will communicate with the LiFi
Controller for retrieving any connection/traffic requests

The KPIs measured are:
1. PON Reconfiguration Latency, the time it takes for the actual

reconfiguration of the PON network, with a target value of <
20s.
- The latency for retrieving the configuration and status

information from different elements in the PON network
was measured between 1.2 to 1.8 seconds

- In addition, the PON Reconfiguration Latency (SLA update
and application) was measured between 450 - 600 ms

2. Access Controller Latencies, the time it takes to Access

Controller to execute different functionalities.
Here are the values reported in the Berlin Demo (WP5):
- Authentication: 234 - 790 ms
- PON SLA creation: 187 - 781 ms
- ONU SLA configuration: 316 - 529 ms
- Logout: 71 - 514 ms
- Send access traffic descriptor to B5G-ONP app: 51 - 79 ms
In addition, the response from B5G-ONP app was measured
between 53 ms and 7.26 seconds (for different B5G-ONP app
configurations).

LiFi Controller PLF The LiFi controller serves as the central component responsible for

managing LiFi APs in the network. It is strategically positioned
between the PON controller and the LiFi AP. This specific positioning
ensures seamless communication and enhanced coordination
between the optical network layer and the wireless LiFi
communication layer

 D4.4 GA Number 101016663

The KPIs measured are:
1. Device Management Accuracy, assessing how accurately the

controller works and manages device states.
- No failure was observed in normal working conditions.

2. Scalability, the controller's ability to scale by managing an
increasing number of LiFi devices without performance
degradation.
- It has been tested for up to three devices in lab conditions.

3. Latency, time for the controller responds to user’s request.
- Measured between 10 and 70 ms (excluding any NETCONF

sessions accessing the LiFi agent).
LiFi agent PLF The LiFi Agent acts as a central hub in the architecture of the LiFi

AP. With the advancement of NETCONF capabilities, the agent
provides a seamless way for the AP to interact with other
components, offering a structured interface for configurations and
management

The KPIs measured are:
1. Device Recognition Success Rate, how often the agent

successfully recognizes and interfaces with devices.
- No failure was observed on recognising the LiFi APs.

2. Configuration Accuracy, how accurately the agent applies the
configuration changes to the devices.
- No failure observed.

3. Stability, how reliable and stable the agent is with multiple LiFi
AP devices.
- Has been tested with up to three LiFi APs in lab conditions.

4. Latency for accessing the LiFi AP
- Measured between 5 ms and 20 ms,
- The latency for having a NETCONF session is typically 30 and

71 ms.
- With the light communication path partially blocked, 150

ms has been observed.

OpenROADM
agent

TIM The OpenROADM agent is an implementation of a NETCONF server
controlling optical network elements using OpenROADM device
models

The KPIs measured are:
1. Start-up delay, for different datastore sizes (4 to 9 degrees).

- Measured between 437 and 477 ms.
2. Discovery Latency, the time required by ONOS SDN controller

to discover the ROADM and its port capabilities.
- Measured between 30.2 and 43.7 ms

3. Connection Latency, the time required for the configuration
change to create a cross-connection between two roadm
degrees.
- Measured between 172 ms and 2.5 seconds.

 D4.4 GA Number 101016663

OpenConfig
agent

CTTC

CNIT

OpenConfig agent is an implementation of an SDN agent using
NETCONF/YANG with the OpenConfig data models. It implements a
subset of the data models, namely the OpenConfig platform and
optical transport as well as some extensions devised in the context
of B5G-OPEN to report details about the transceiver operational
mode

The KPIs measured are:
1. Instantiation delay and footprint: when the agent is running as

a containerized application, characterize aspects related to
instantiation of the agent, as well as aspects related to memory
usage.
- Measured from 17 ms to 1.230 seconds. The variability is

due to retrieving operational data from the devices.
2. Discovery latency: measure the time and the control plane

overhead (in terms of bytes, and throughput) it takes for an SDN
controller to discover the components of the transceiver upon
a NETCONF get operation.
- The discovery latency was measured as 475 ms

3. Operational Mode characterization: measure the time and the
control plane overhead (in terms of bytes, and throughput) it
takes for an SDN controller to discover the details of a given
operational mode
- The measured value was 300ms

4. Transaction delay: the time it takes to send a configuration
change, and this is reflected in the datastore. The focus shall be
to change an Optical channel frequency, power and operational
model. This KPI will be evaluated with and without hardware
- A total setup time of around 300s is needed to perform all

the required OpenConfig operations to set up the
connection.

SONiC based
packet optical
node

CNIT The Software for Open Networking in the Cloud, i.e., SONiC, [SONIC]
is considered as the Network Operating System (NOS) to be
deployed on packet-optical IPoWDM nodes operated in
metro/aggregation networks. Within the B5G-OPEN project SONiC
has been extended with several components provided in the form
of docker containers.

The KPIs measured are:
1. Time required at the data layer for enforcing a modification of

the central frequency of the optical coherent transceivers, has
measured using ZR and ZR+ transceivers:
- Control plane time from 9.38 to 10.37 seconds
- ZR transceiver output time from 67,34 to 71.06 seconds
- ZR+ transceiver output time from 13.2 to 19.1 seconds

2. The spectrum width required to preserve the quality of
transmission of a 400 Gbps channel with 16-QAM modulation
format:
- 68 GHz required for no QoT degradation
- 60 GHz with QoT degradation.

 D4.4 GA Number 101016663

AI/ML models
for PSD and
Power
Management

NOKIA Machine learning application towards augmented optical networks
and is called “Automatic power correction”

The KPIs measured are:
1. Gain/loss of performance: The difference between the signal-

to-noise ratio before and after using this AI/ML component.
- The SNR gain after correction is up to 0.5 dB for 1dB power

correction and 1dB for 2.5dB power correction.
- The maximum loss of performance was 0.15dB

2. Scalability in terms of number of input points: The number of
points required for the optical PSD to get a given accuracy
- For 20 PSD points, the error standard deviation is 1.67dB
- For 100 PSD points, the error standard deviation is 1dB
- For 315 PSD points, the error standard deviation to 0.41 dB.

Telemetry
System

UPC B5G/OPEN distributed telemetry system integrates measurements
and event data collection and supports intelligent data aggregation
nearby data collection, so agents receive and analyse
measurements before sending to a centralized manager.

The KPIs measured are:
1. Optical Constellation Data Compression with Autoencoders, a

compression technique applied to optical constellation
measurements.
- Achieved 625:1 compression with reconstruction error <

2%
2. Spectrum Dimensionality Reduction with Feature Extraction, a

technique applied to spectrum measurements.
- The compression rate achieved was 7.5:1

FlexTelemetry
Agent

Adtran The FlexTelemetry Agent periodically requests and collects
performance measurements from optical transport network
devices. It utilizes NETCONF and supports both open (OpenConfig)
and proprietary data models to ensure comprehensive data
collection. It features a modular plugin system that provides a
Northbound Interface (NBI) capable of delivering stable telemetry
streams to various mediums. This modular approach allows Flex-
Telemetry to seamlessly integrate with diverse data storage and
processing systems, facilitating efficient, scalable access to
performance data across different platforms.

Mesarthim –
Failure
management
Using a SNR
Digital Twin

UPC MESARTHIM compares the QoT measured in the transponders with
the one estimated using a QoT tool. Deviations can be explained by
changes in the value of input parameters of the QoT model
representing the optical devices, like noise figure in optical
amplifiers and reduced Optical Signal to Noise Ratio in the
Wavelength Selective Switches. By applying reverse engineering,
MESARTHIM estimates the value of those modelling parameters as
a function of the observed QoT of the lightpaths

The KPIs measured are:

 D4.4 GA Number 101016663

1. Estimate the most likely modelling configuration, with relative
average error of the modelling parameters estimation < 8%.
- At each step, the module was able to explain the increment

in the SNR of the lightpath by a reduction in the bandwidth
in the related WSS or the NF of the OA. R2 > 0.986

2. Anticipation of soft failures, higher than 15% through the
estimation of modelling parameters w.r.t. SNR analysis.
- P-max degradation anticipated 15%
- NF degradation anticipated 45%
- WSS degradation anticipation 27%

3. Severity estimation, anticipating > 40%
- P-max estimation 42.8%,
- NF estimation 62.8%
- WSS estimation 49.6%

Ocata - Digital
Twin for the
Optical Time
Domain

UPC OCATA is a deep learning-based digital twin for the optical time
domain that is based on the concatenation of deep neural networks
(DNN) modelling optical links and nodes, which facilitates
representing lightpaths. The DNNs model linear and nonlinear
noise, as well as optical filtering

The KPIs measured are:
1. Lightpath modelling error, comparing the optical constellations

generated with OCATA with real ones for the same lightpath.
- Distribution mean error under 2% independently of the link

length.
- Distribution standard deviation error under 15% for longer

paths.
- The reconstruction of the features of the non-selected

constellation points showed an accuracy of 97%.
- Average error for lightpath estimation < 5% for lightpaths

over 500Km
- Average error for estimation of number of hops of the

lightpath < 5%.
2. Reduction of running time, with a target value of > 2 orders of

magnitude with respect to Split-Step Fourier Method (SSFM)
simulation
- The running time is over 3 orders of magnitude faster than

SSFM.
- The running time depends only on the number of hops and

not on the distance (as in SSFM).

 D4.4 GA Number 101016663

TABLE OF CONTENTS
TABLE OF CONTENTS ... 14

1 Introduction ... 1

2 High-level description of the control plane ... 4

2.1 B5G-OPEN control plane services .. 4

2.1.1 Point to Point Optical Connectivity .. 4

2.1.2 Point to Point DSR Connectivity ... 4

2.1.3 Point to Multipoint connectivity .. 4

2.1.4 IP link provisioning ... 5

2.1.5 Packet/IP Connectivity ... 5

2.1.6 P2MP Access Connectivity ... 6

2.1.7 B5G-OPEN Network Slice ... 6

2.1.8 Other services .. 6

2.1.9 Telemetry and Intent Based Networking ... 6

2.2 Optical Network control .. 7

2.2.1 TAPI-enabled Optical Network Orchestrator (TAPI NOrch) 7

2.2.2 Optical Controller .. 7

2.2.3 OLS Controller .. 8

2.2.4 Optical Path Computation Element ... 9

2.2.5 Multi-domain scenarios ... 9

2.3 Access Networks Control ... 10

2.3.1 The Framework of TDM-PON Configuration and Control 10

2.3.2 LIFI Control... 11

2.4 Orchestration ... 12

2.4.1 IT and network resources orchestration .. 12

2.4.2 B5G-ONP modules ... 12

2.5 Packet/optical integration ... 13

2.5.2 Sonic generic architecture ... 14

2.5.3 Pluggable management and control .. 14

2.5.4 P2MP Pluggable Management and Control ... 15

2.6 Telemetry platform .. 16

2.6.1 B5G-OPEN Telemetry Architecture .. 16

2.6.2 OLS Node Agent and Telemetry Adaptor ... 18

2.7 Autonomous Networking and Quality Assurance .. 19

2.7.1 Autonomous Networking ... 19

 D4.4 GA Number 101016663

2.7.2 Single-Domain and Multi-Domain Quality Assurance .. 20

3 B5G-OPEN Software Components ... 22

3.1 B5G-ONP (ELIG) ... 22

3.2 TAPI-enabled Optical Network Orchestrator with externalized Path Computation (CTTC)
 26

3.3 Path Computation Elements – MB-PCE – (OLC-E) ... 32

3.4 Optical Controller (CNIT).. 35

3.5 Access Controller / PON Controller (OLC-E) ... 38

3.6 LiFi controller (PLF) .. 41

3.7 LiFi agent (PLF) ... 43

3.8 OpenROADM Agent (TIM) ... 45

3.9 OpenConfig Agent (CTTC and CNIT) ... 48

3.10 SONIC-based Packet Optical Node (CNIT) .. 54

3.11 AI/ML models for PSD and Power Management (NOKIA) .. 58

3.12 Telemetry System (UPC) .. 61

3.13 FlexTelemetry Agent (Adtran) ... 65

3.14 Mesarthim – Failure management Using a SNR Digital Twin (UPC) 66

3.15 Ocata - Digital Twin for the Optical Time Domain (UPC) ... 68

References ... 72

 D4.4 GA Number 101016663

List of figures

Figure 2-1 Macroscopic B5G-OPEN architecture and Service instantiation interfaces. 4
Figure 2-2 IP link provisioning between the whiteboxes. ... 5
Figure 2-3 multiple IP link provisioning between the whiteboxes using P2MP XR. 5
Figure 2-4 B5G-OPEN Control and Orchestration architecture .. 6
Figure 2-5 B5G-OPEN Intent Based Applications (IBN) and Knowledge-Sharing. 7
Figure 2-6 ADVA OLS Controller Northbound Interfaces .. 9
Figure 2-7 Control plane architecture for the multi-OLS scenario, showing a back to back
add/drop-add/drop configuration. ... 10
Figure 2-8 B5G-OPEN Control of PON through the PON Controller ... 11
Figure 2-9: LiFi-XC AP .. 11
Figure 2-10: Initial assumption for LiFi control ... 12
Figure 2-11 Coordination of Kubernetes cluster from B5G-ONP .. 13
Figure 2-12 Traditional SDN architecture for transponder-based optical networks. 14
Figure 2-13 Pluggable management and control architecture ... 15
Figure 2-14 P2MP Control integration in B5G-OPEN .. 16
Figure 2-15 Overall network architecture ... 17
Figure 2-16 Measurements telemetry architecture and workflow .. 17
Figure 2-17 Events telemetry architecture and workflow .. 18
Figure 2-18 Intra domain Control loop architecture ... 20
Figure 2-19 Intent-based networking in the intra-domain ... 21
Figure 2-20 Intent-based networking in multi-domain scenarios ... 21

 D4.4 GA Number 101016663

1

1 INTRODUCTION
This deliverable reports the high-level description of the software and sub-components
implemented for B5G-OPEN. This is presented in two parts, a summary of the key elements
of the architecture and tables for the sub-components, showing their status, availability and
other information.

More formally, the document summarizes the Infrastructure Control and Service
Management platform architecture implemented in the B5G-OPEN Control, Orchestration
and Telemetry System (referred to as the control plane, for short). The key aspects of the
architecture are:

 Multi-Band operation: Provision services using available bands out of the O-, E-, S-,
C-, L-band in optical fibres.

 Optical continuum: Allow optical slicing based on service requirements and crossing
network segments (i.e. access, metro, core, etc.)

 Integrated access: Operate and control service regardless of the access technology
(Mobile, Fixed, WiFi, LiFi)

 E2E network orchestration: Operate service and network operations from the Access
Point to the Cloud node, which may include monitoring and AI/ML

 Autonomous operation: Based on Intent-based and zero-touch networking
paradigms, autonomous operation is built using closed-control loops at various
levels, from device to network.

The major parts of the architecture include: service orchestration and planning, packet
optical-integration systems, telemetry and intent-based networking. As presented in D4.1,
the main control plane innovations are:

- [multiband control] Control of optical multi-band network, this means being able to
exploit the multiband capabilities of optical devices such as transmission
(transceivers) or switching (multi-band ROADMs).

- [transparent multi-domain, domain-less] The ability to set up connections in a
transparent manner, across multiple domains and network segments. This is
exemplified in the “multi-OLS” scenario, in which different optical line systems are
interconnected without a O/E/O conversion. There is a systematic need to extend
SDN principles to networks composed of multiple domains and technological layers,
significantly more complex than single domain networks due to the lack of detailed
and global topology visibility. The division into domains is driven by factors such as
scalability limitations, confidentiality requirements, or interoperability issues, and
the conception of scalable, efficient reliable, and trustable systems for the
provisioning of end-to-end services.

- [Packet/optical integration] The evolution from discrete optics towards pluggable
interfaces is also challenging the design of the control plane which, to a large extent,
has considered the control plane of the IP/MPLS layer largely decoupled from the
control plane of the optical layer. Current architectures for the SDN control plane of
the transport network consider the scope of the control considering discrete
transceivers and the tunability of the transceiver was directly under the control of
the optical SDN controller and multi-layer networking was commonly accomplished

 D4.4 GA Number 101016663

2

typically with a hierarchical arrangement of controllers (a packet controller and an
optical controller under the orchestration of a parent controller). This is addressed
in B5G-OPEN, considering multiple options including exclusive or concurrent control.

- [physical layer impairments, PLI] accounting for PLI is critical to efficiently plan and
operate optical networks and high data rates, with increasing non-linear effects.
When considering the extension to wide-band, such parameters can be specific to
certain frequency bands and one can no longer assume uniform channel behaviour.
Until recently, there has been a lack of common, standard, and open data models for
physical impairments, a domain where it has been difficult to reach a wide
consensus. Current systems need to interoperate with heterogeneous monitoring
info sources and proprietary and costly simulation tools are difficult to interop or
integrate. The new opportunities associated to the development of planning,
validation, and path computation tools such as the Open-Source GNPy[Fer20] or
Net2Plan[Pav15] has once again shown the importance and role of standard and
open interfaces. The challenge is then two-fold: how to integrate such third-party,
externalized tools and from a modelling perspective, how to extend current network
and service models to account for PLI. This includes a finer characterization of
transceivers operational modes, which characterize a given transceiver’s different
transmission modes including aspects such as bit/baud rate, FEC or modulation
formats, as is being done in OpenConfig manifests, IETF operational mode
characterization or TAPI transceiver profiles. Additionally, further work is required to
model optical fibers – including the selection of a relevant sent of parameters --,
amplifier functions e.g., in terms of parameters such as wavelength dependent gain,
operation mode, noise figure as well as network elements such as ROADMs. Finding
the right abstraction level, where a given model can be applied to a multiplicity of
devices from different providers is challenging.

- [telemetry] The scope of the SDN no longer covers exclusively device / system
control and configuration aspects but extends to optical monitoring and telemetry,
a key enabled for advanced functions such as autonomous/autonomic networking
via hierarchical and coordinated closed loops. Streaming Telemetry protocols and
architectures such as gRPC/gNMI are increasingly being used to export telemetry
data from devices, providing flexibility in the definition of streams, filtering, and use
cases. Telemetry architecture is detailed in Section 2.6.

- [external planning tools] Planning tools, including QoT estimators or path
computation and validation systems need efficient access (in terms of retrieval,
storage and processing) to collected and managed data. Algorithm inputs need to be
modelled in an efficient and scalable way, defining dynamic workflows with
controlled and minimized impact on service provisioning latency. Algorithmically,
functional elements dedicated to generalized Routing and Spectrum Assignment
(RSA) or function placement are needed and are expected to operate in hybrid off-
line/on-line modes, e.g., dynamically, used to compute/validate e.g., OTSi services
over specific bands with satisfactory QoS/QoT. In this sense, further work is needed
to have a unified short-term provisioning and long-term network-planning using a
single software framework. Such systems need to scale in complexity. The fact that
data is heterogenous and covers multiple application domains renders the
development of placement algorithms of orchestrator schedulers that need to
retrieve network information from multiple layers and domains extremely complex.

 D4.4 GA Number 101016663

3

- [network automation] Aspects related to automation, zero touch networking and
Intent Based Networking (IBN) are developed in the areas of service deployment,
network planning and overall network operation. Outcomes related to automation
in single domains and later cross-domain automation (across technology layers or
network segments).

 D4.4 GA Number 101016663

4

2 HIGH-LEVEL DESCRIPTION OF THE CONTROL PLANE

2.1 B5G-OPEN CONTROL PLANE SERVICES
The Figure 2-1 shows a simplified representation of the control plane architecture.

Figure 2-1 Macroscopic B5G-OPEN architecture and Service instantiation interfaces.

The following subsections summarize the targeted services, presenting a brief description
and applicability statement.

2.1.1 Point to Point Optical Connectivity
The Point-to-Point Optical Connectivity service addresses point to point connection between
optical ports, corresponding to, for example, the line ports of packet/optical devices or
discrete transceivers (when the configuration remains at the OTSi layer) or corresponding to
ROADM add/drop ports.

2.1.2 Point to Point DSR Connectivity
This service addresses Digital Signal Rate (DSR) provisioning between two stand-alone
transceivers or whiteboxes (term that refers to a network element that uses a chassis and a
node operating system, often provided by different vendors, and for which most of the
components are open) with integrated transceivers. It is part of IP link provisioning between
elements (packet/optical nodes) and relates to creating, dynamically and in real time,
connectivity to support packet transmission between whiteboxes. Given end transceivers,
rate and applicable constraints, the control plane configures and activates the “line part” of
the transceiver (modulation, spectrum). Note that the creation of a DSR connectivity service
typically triggers the interaction with the optical SDN controller and OLS controller, including,
eventually, the creation of OLS point to point connectivity (see above).

2.1.3 Point to Multipoint connectivity
This service addresses the provisioning of a point to multipoint connection from a hub to
several leaves. The service is realised by means of OpenXR configuration of the transceivers
and relies on a dedicated sub-controller. This OpenXR controller is under the control of the

White -
box

TxRxIP
equip. TxRx

TxRx

Line side

Client side

TxRx
TxRx
TxRx

OADM

OADM

OADM White -
box

TxRx
TxRx

TxRx

Line
side

Client
side

TxRx
TxRx

TxRx

IP
equip.

K8S
Node

K8S
Node

OLS SDN controller
[controls OADMs & amplifiers]

K8S
API server

B5G-OPEN NETWORK PLANNER

Management of
network

monitoring /
autonomic
networking

Dimensioning
& Analysis

Module

Provisioning &
Discovery
Module

Optical Path
computation

Module

IP SDN
controller Optical SDN controller

TAPI Optical Network Orch.PON SDN
controller

XR

OLT

XR SDN
controllerPON

 D4.4 GA Number 101016663

5

B5G-OPEN orchestrator, and logically provides multiple point-to-point links between routers
attached to the hub (root) and leaves of the system.

2.1.4 IP link provisioning
Related to the previous service, and given an existing DSR service, the B5G-OPEN
orchestrator interacts with IP SDN controller to configure the transceivers as IP interfaces in
the whitebox. The newly created DSR connectivity becomes a logical interface (e.g., serialXX,
ethXX), and The DSR connectivity is seen by the device as a physical port with an associated
logical interface (...) which can be used to forward packets (of any kind, not only IP, for
example LLDP, IS-IS, etc). This is shown in Figure 2-2, and the relevant list of operations to
perform can cover e.g., interface activation, IP address configuration, etc.

Figure 2-2 IP link provisioning between the whiteboxes.

Figure 2-3 multiple IP link provisioning between the whiteboxes using P2MP XR.

2.1.5 Packet/IP Connectivity
Generally speaking, IP connectivity relies on the existence of IP links between whiteboxes.
When we consider packet or IP connectivity, we refer to configuring packet switching at the
Packet/Optical nodes. This configuration can rely, typically, on IP forwarding or in more
advanced SDN-based solutions, such as those based on P4. In this context, an SDN controller
may either i) configure IGP/routing protocols (such as OSPF or BGP) or ii) provide flow
configuration for flow switching, based on e.g., addresses, ports.

For non-connection-oriented IP, (regular IP routing) given end IP routers (whiteboxes), rate,
IP QoS, and constraints, it is responsibility of the B5G-OPEN Orchestration platform to check
(via Dimensioning & analysis module) if there is enough IP capacity and take the decision of
making the required IP link/DSR provisioning.

 D4.4 GA Number 101016663

6

2.1.6 P2MP Access Connectivity
The orchestrator is also responsible to ensure P2MP connectivity with the access segment.
This involves the configuration of the PON controller and is detailed in Section 2.3

2.1.7 B5G-OPEN Network Slice
In this context, a B5G-OPEN slice is defined as a set of interconnected computing and storage
functions, deployed within the B5G-OPEN infrastructure, and which involves the
orchestration of heterogeneous computing, storage, and networking resources.

2.1.8 Other services

2.1.8.1 Telemetry services
At any part of the control plane architecture, systems and devices may export telemetry
services. Telemetry clients may connect and be updated with events, telemetry data etc.

2.1.8.2 Optical Topology Services
Clients MUST be able to retrieve the topology of the underlying optical network. This means
being able to retrieve the set of links, nodes, and ports associated with the different layers
and, notably, including additional information that may be useful for externalized path
computation entities.

2.1.8.3 Optical Path Computation Services
Clients MUST be able to perform path computation on the underlying topology. This can be
consumed internally or left for external clients.

2.1.9 Telemetry and Intent Based Networking
The domain telemetry collector architecture has also been defined. It involves a Telemetry
Manager with its own repository as well as telemetry agents that sit on different elements,
using the REDIS database. Intent Based Networking Applications implement Knowledge
Sharing and rely on the services offered by the different functional elements.

Figure 2-4 B5G-OPEN Control and Orchestration architecture

 D4.4 GA Number 101016663

7

Finally, the B5G-OPEN architecture spans from the Access Point to the Cloud node, which
might include monitoring and AI/ML. Based on Intent-based (IBN) and zero-touch networking
paradigms, autonomous operation is built using closed-control loops at various levels, from
device to network. Empowered by a distributed AI/ML-based engine providing data
collection and intelligent aggregation, analysis, and acting on the network devices,
autonomous operation enables coordinated decision-making across domains. This is shown
in Figure 2-5.

Figure 2-5 B5G-OPEN Intent Based Applications (IBN) and Knowledge-Sharing.

2.2 OPTICAL NETWORK CONTROL

2.2.1 TAPI-enabled Optical Network Orchestrator (TAPI NOrch)
The TAPI-enabled Optical Network Orchestrator is a functional element of the architecture
that is responsible for the following functions:

- Providing a uniform, open and standard view and interface to the higher levels and
components of the B5G-OPEN control, orchestration, and telemetry system.

- Compose a complete Context to be consumed by B5G-OPEN network planner and
additional consumers combining information retrieved from subsystems and sub-
controllers (Optical Controller, external databases, monitoring systems, etc).

- Enable single entry point for provisioning DSR and Photonic Media services, including
externalized path computation.

- Provide an event telemetry data source that reports events that happen
asynchronously in the network.

2.2.2 Optical Controller
The optical controller is based on ONOS SDN controller that provides a wide environment
that is used to control and configure optical devices and transceiver equipped within
packet/optical white boxes. In particular, the main roles of the optical controller are: (i)
retrieve devices description from data plane and abstract them toward the upper control
layers; (ii) receive the service configuration requests by the upper control layers and translate
such requests in a set of configuration messages to be forwarded to each involved device.

The 3.0 version of ONOS have been forked at the beginning of the project and augmented
with several project specifics features published in a public repository. Some selected
features have been also exported and merged into the main ONOS distribution. Work done

 D4.4 GA Number 101016663

8

has been mostly oriented to enable the integration with other components of the B5G-OPEN
control plane such as the T-API orchestrator (NBI), devices OpenConfig and OpenROADM
agents, and to introduce the support of flexi-grid and multi-band in the controller’s core.

The figure below illustrates the ONOS GUI deployed at the TIM premises for the flex-grid,
multi-band experimental testbed, where both control plane and data plane B5G-OPEN
components have been integrated and validated. In particular, the ONOS controller was used
to control two network domains. The one illustrated in the figure includes O-BAND switches
(implemented using TUE devices), C-BAND switches (implemented using commercial
devices), and emulated multi-band filters. The testbed also included SONiC-based white-
boxes with coherent optical transceivers that were directly controlled by the network
orchestrator. The two ONOS controllers (one per network domain) export the network
topology to the T-API orchestrator and have demonstrated the ability to process connectivity
requests (creation and deletion) from the T-API orchestrator, consistently configuring all
involved data plane devices. This work has been published at ECOC 2024 [Mor24].

2.2.3 OLS Controller
The ADVA OLS controller is based on the Ensemble Network Controller software solution and
is offering a northbound ONF Transport-API (TAPI) towards the Optical Controller.

 D4.4 GA Number 101016663

9

Figure 2-6 ADVA OLS Controller Northbound Interfaces

The OLS controller is exposing the topology. The topology model provides the explicit
multilayer topology that the Layer 2 to Layer 0 represents. This topology includes the OTS,
OMS, and OCH. Based on ONF TAPI 2.1 models, the OLS controller supports a TAPI topology
flat abstraction model that collapses all layers into a single multilayer topology. A single
topology represents all network layers such as OCH, and Photonic Media, which include
media channels, OMS, OTS and so on. This topology is modelled as a tapi- topology:topology
object within the tapi-topology:topology-context/topology list.

2.2.4 Optical Path Computation Element
In B5G OPEN, TAPI has been chosen as the NBI for the optical network controllers (TAPI
Optical Network Orchestrator), handling the provisioning and control of optical connections.
The optical SDN controller may optionally use an external Path Computation Element, for
assisting it in the path computation of the connections.

In TAPI, the Optical Path Computation Element (OPCE) determines an end-to-end path
between Service Interface Points (SIPs) and is developed as a TAPI-enabled component. The
orchestrator sends to the OPCE a TAPI path-request. This module requests an abstract
topology from the context manager, calculates the path and responses with TAPI path-reply
after finding a path within that internal context. The interactions between the OPCE and the
TAPI- Optical Network Orchestrator element is governed by the standardized Path-
Computation-Service interface and APIs, as defined in [Man21], and when needed, standard
extensions may be proposed along the project.

2.2.5 Multi-domain scenarios
Of special interest for B5G-OPEN is the “multi-OLS scenario”, (see Figure 2-7) which is to be
considered for use cases related to the provisioning of services across a muti-segment
network in a transparent way. In the multi-OLS scenario, several domains are interconnected
transparently (e.g. via optical links), connecting, for example a degree of a ROADM to a
degree of a ROADM or add/drop to add/drop, as shown in the figure). Such scenarios shall
be addressed with an arrangement of controllers and the key issue to research is how to
retrieve the abstracted topological information to perform efficient path computation.

 D4.4 GA Number 101016663

10

Figure 2-7 Control plane architecture for the multi-OLS scenario, showing a back to back add/drop-add/drop
configuration.

2.3 ACCESS NETWORKS CONTROL
The B5G-OPEN control and orchestration software system will also support the control of
access network segments in addition to the control and orchestration of packet and optical
network segments. In this direction, B5G-OPEN will have the capability to control access
networks including Passive Optical Networks (PONs) and LiFi networks.

2.3.1 The Framework of TDM-PON Configuration and Control
The B5G-OPEN TDM-PON infrastructure is realised using an XGS-PON OLT pluggable
transceiver (e.g., TiBit pluggable) and a couple of pluggable ONUs (e.g., Tibit ONUs). The OLT
is interfaced directly to a whitebox switch while the OLT is interconnected to the ONUs by
means of splitters, forming up an ODN branch. The integration of these pluggables with the
B5G-OPEN software platform is made feasible at three different levels (from higher to lower
layer). These options lead to different alternatives for the implementation of TDM-PON's
control-plane, presented in the next subsections.

The selected alternative, the PON vendor provides the pluggable software and the PON
controller software. The TDM-PON control-plane architecture and its integration to the B5G
OPEN platform are illustrated in Figure 2-8. Since the PON Controller is provided by the PON
vendor, a Higher-Layer PON Controller is developed as part of the B5G-OPEN software
platform, providing a slightly different functionality:

 The information exchange is again based on the BBF/ITU YANG models. However,
the SBI that communicates with the PON Controller is a software client that is
developed based on OLT PON SDK.

 A NETCONF/REST server at the Northbound Interface (NBI) which exposes a set of
APIs that allow the B5G-ONP app to provision and configure the PONs. This API is
using a simplified (subset) BBF/ITU YANG model which depend on the abstraction
and transformation realised in the lower layer.

 D4.4 GA Number 101016663

11

Figure 2-8 B5G-OPEN Control of PON through the PON Controller

2.3.2 LIFI Control
The LiFi access networks is provided by Access Points (APs), named LiFi-XC, provided by
pureLiFi.

Figure 2-9: LiFi-XC AP

1) The LiFi control for B5G-OPEN supports a NETCONF interface, with a LiFi specific
YANG model to configure a LiFi AP. The motivation behind NETCONF and YANG is
that instead of having individual devices with functionalities, there is a need to have
a network management system that manages the network at the service level. To
integrate the LiFi access technology in the overall B5G-OPEN architecture, NETCONF
and YANG add more functionalities in the network management.

2) There is a telemetry adaptor within the LiFi AP for LiFi telemetry data collection and
transmission.

 D4.4 GA Number 101016663

12

Figure 2-10: Initial assumption for LiFi control

2.4 ORCHESTRATION

2.4.1 IT and network resources orchestration
The orchestrations process consists of the coordination of both IT and network resources of
the infrastructure, in an efficient and harmonized form, pursuing a global optimization of the
infrastructure usage.

The so-called slice is the key service requiring such a joint IT and network allocations. In B5G-
OPEN, we generalize the concept of slice as a set of IT requirements to be allocated in the IT
infrastructure, together with a set of network requirements connecting them, to be allocated
in the network infrastructure. In B5G-OPEN, the orchestration process is implemented in a
collaborative form among three key groups of components:

1. The IT resources, potentially distributed in one or more clusters, at different
locations across the operators’ infrastructure, are handled by one or more IT
orchestrator systems.

2. The network resource, involving IP/MPLS and optical layers, are controllable via one
or more SDN controllers.

The coordination of IT and network resource allocations is handled by the B5G-ONP (Open
Network Planner). The key functions of the ONP are providing tools for the design,
optimization, and planning of services.

2.4.2 B5G-ONP modules
B5G-ONP consists of three main modules (see Figure 2-11):

 Provisioning and discovery module. This module is intended to manage the
provisioning and termination of different operator-level services, as the ones
discussed in Section 3, that may involve It and/or network resources. Such functions
are accessed via an open API designed along the project. However, a Graphical User
Interface is prototyped to ease the interactions.

 Dimensioning and analysis module. This module hosts different algorithmic
resources, that realize the resource allocation decisions, in different use cases,
covering both offline network dimensioning, and online resource allocations. These
modules are designed to be accessed via an open API defined along the project, and
also a prototyped GUI.

 D4.4 GA Number 101016663

13

 Optical Path Computation Element. This module is specifically developed to be able
to interact with the TAPI Optical Network Orchestrator, in order to act as an Optical
Path Computation Element node, to which the TAPI Optical Network Orchestrator
can delegate the optical path computations.

Figure 2-11 Coordination of Kubernetes cluster from B5G-ONP

2.5 PACKET/OPTICAL INTEGRATION
Two alternative SDN-based hierarchical solutions are in phase of discussion in the community
enabling control of coherent pluggable transceivers in a multi-layer network exploiting hybrid
packet-optical nodes.

2.5.1.1 Reference scenario and proposed solutions
Figure 2-12 shows a traditional metro network using packet switching nodes (i.e., routers)
and stand-alone transponders interconnected through optical line systems (OLSs), where the
OLS is typically composed by a number of ROADMs and optical amplifiers. In this scenario,
the SDN architecture is implemented with a clear domain separation. Three controllers are
typically considered: a Hierarchical Controller (HrC) coordinating the end-to-end
connectivity; an Optical Controller (OptC) in charge of transponders and OLS; and a Packet
Controller (PckC) in charge of packet switching devices. However, since the two domains are
practically independent of each other, the role of the HrC is almost limited to forwarding the
received requests to one of the child controllers which, traditionally, has full and exclusive
visibility on all underlying network elements. For example, OptC is the unique entity accessing
the transponders while PckC is the unique entity configuring the packet nodes.

 D4.4 GA Number 101016663

14

Figure 2-12 Traditional SDN architecture for transponder-based optical networks.

The introduction of packet-optical nodes imposes the redesign of the overall SDN control
architecture. Indeed, transponders are replaced by packet-optical nodes equipped with
pluggable modules and the traditional control mechanisms provided by the PckC only are not
sufficient to configure optical parameters. Since, in large metro networks, a single controller
with visibility of both layers is not feasible due to scalability issues, a proper workflow needs
to be defined to enable coordinated operations among controllers, where the HrC assumes
a fundamental coordination role.

2.5.2 Sonic generic architecture
SONiC system's architecture is composed of various modules implemented as Docker
containers that interact among each other through a centralized and scalable infrastructure.
At the center of this infrastructure resides a redis-database engine, a key-value database that
provides a language independent interface to all SONiC subsystems. Thanks to the
publisher/subscriber messaging paradigm offered by the redis-engine infrastructure,
applications can subscribe only to the data-views that they require. The docker containers
run within the SONiC operating system, based on the Linux kernel, at user space level. Linux
allows access to the hardware of the machine only in kernel mode, i.e., elevating the
privileges of the running process in controlled mode. For this reason, the interface to the
underlying hardware takes place by means of appropriate drivers. SONiC exploits the
possibility of extending the Linux kernel thanks to the so-called Loadable Kernel Modules
(LKM), which avoid the need to prepare a kernel version containing the drivers needed by
the specific hardware, considerably simplifying the support of switches with different
features.

2.5.3 Pluggable management and control
Whitin the BG5-OPEN project, the SONiC network operating system (NOS) running on the
packet-optical node is extended with a new docker container that enables SDN on SONiC. A
NETCONF Agent, developed in the BG5-OPEN project, is deployed in a docker container that
runs within the NOS and, as depicted in Figure 2-13, communicates with the other containers

 D4.4 GA Number 101016663

15

in the system for retrieving and writing information related to coherent pluggable modules.
More in detail, in the SONiC version 202205 the pmon container runs an updated version of
xcvrd daemon, capable to retrieve and write the coherent optical parameters from/to the
registers of pluggable modules. The interfaces used by the demon are compliant with the
CMIS v5.0 and C-CMIS v1.1 standards. The daemon periodically stores the optical
transmission parameters in the Redis database.

Figure 2-13 Pluggable management and control architecture

SONiC utilizes custom YANG models that do not take into account optical pluggable modules.
To address this limitation, in B5G-OPEN, the standard OpenConfig YANG model openconfig-
platform-transceiver.yang is used within the NETCONF agent to model the optical pluggable
modules. More in details, the parameters in the model can be filled in two ways: in the first
one, the agent reads the optical parameter stored in the Redis database by the xcvrd
daemon. In the second one, the agent reads or writes the optical parameters of the pluggable
module leveraging the API used by xcvrd. Indeed, as depicted in Figure 2-13 two bidirectional
arrows reach the agent, they represent the communication interfaces (e.g., a socket or/and
REST API), developed in B5G-OPEN to allow the exchange of information between the agent
and/or Redis/Pmon containers. In B5G-OPEN the optical SDN controller communicates with
the NETCONF agent to monitor and control the pluggable modules placed in the packet
optical nodes.

2.5.4 P2MP Pluggable Management and Control
The management of P2MP pluggable modules proposed by Open XR [Swe22] considers a dual
management structure. The first path, as shown in Figure 2-14 left side, provides the
“traditional” functionality via the register-based information model defined in Multi-source
agreements such as OIF CMIS.

However, the latest version of CMIS lack the capabilities of setting up multiple subcarriers or
dynamically assigning traffic to the different subcarriers. Hence, a second path, as shown in
Figure 2-14 right, is proposed to be able to communicate directly with the P2MP pluggable.
When the messages are destined for the Open XR module are received by the router, they

 D4.4 GA Number 101016663

16

are handled by the Communication Agent Service running on the router. These messages are
forwarded to the data path entering the Open XR module via the module host electrical lanes
where they are recognized as management/control messages and handled appropriately.

Figure 2-14 P2MP Control integration in B5G-OPEN

2.6 TELEMETRY PLATFORM
Telemetry data is collected from observation points in the devices (measurements), as well
as events from applications/platforms (e.g., Software Defined Networking (SDN) controllers
and orchestrator) which are then sent and collected by a central system. A telemetry
“collector” or “mediator” agent may overcome this challenge and provide mechanisms to
obtain a stable stream of telemetry from legacy devices.

In B5G-OPEN, we have designed a telemetry architecture that supports both measurements
and events telemetry. For the former, intelligent data aggregation is placed nearby data
collection to reduce data volumes, whereas for event telemetry, data is transported
transparently.

2.6.1 B5G-OPEN Telemetry Architecture
Figure 2-15 presents the network scenario, where the B5G-OPEN Control system is in charge
of several optical nodes: optical transponders (TP) and reconfigurable optical add-drop
multiplexers (ROADM). A centralized telemetry manager is in charge of receiving, processing,
and storing telemetry data, including measurements and events. The telemetry database
(DB) includes two repositories: i) the measurements DB is a time-series DB stores
measurements, whereas the ii) the event DB is a free-text search engine. In addition,
telemetry data can be exported to other external systems.

Some data exchange between the SDN control and the telemetry manager is needed, e.g.,
the telemetry manager needs to access the topology DB describing the optical network
topology, as well as the label switched path (LSP) DB describing the optical connections
(theses DBs are not shown in the figure). Every node in the data plane is locally managed by
a node agent, which translates the control messages received from the related SDN controller
into operations in the local node and exports telemetry data collected from observation

 D4.4 GA Number 101016663

17

points (labelled M) enabled at the optical nodes. In addition, events can be collected from
applications and controllers (labelled E).

Figure 2-15 Overall network architecture

A detailed architecture of the proposed telemetry system is presented in Figure 2-16 for the
case of measurements telemetry. The internal architecture of telemetry agents inside node
agents and the telemetry manager is shown. Internally, both, the telemetry agent and
manager are based on three main components: i) a manager module configuring and
supervising the operation of the rest of the modules; ii) a number of modules that include
algorithms (e.g., data processing, aggregation, etc.) and interfaces (e.g., gRPC); and iii) a Redis
DB that is used in publish-subscribe mode to communicate the different modules among
them. This solution provides an agile and reliable environment that simplifies
communication, as well as the integration of new modules. A gRPC interface is used by the
telemetry agents to export data to the telemetry manager, and by the telemetry manager to
tune the behaviour of the algorithms in the agents.

Figure 2-16 Measurements telemetry architecture and workflow

 D4.4 GA Number 101016663

18

Events generated in a SDN controller (or other system), are injected in the telemetry agent,
and transported transparently to the telemetry manager, which stores them in the Events
DB and exports to external systems. Note that Null Algorithms are used here just to
propagate events, which results in the same workflow as in the case of measurements, but
no processing is performed.

Figure 2-17 Events telemetry architecture and workflow

2.6.2 OLS Node Agent and Telemetry Adaptor
The OLS Node Agent is a Python-based application designed to stream telemetry data from
multiple devices simultaneously. In the southbound direction, it collects data using NETCONF
(for general telemetry) and SNMP (specifically for amplifiers). The agent can then push the
collected metrics to various northbound plugins, including Redis, Apache Kafka, MQTT
(Mosquitto), and InfluxDB. The agent handles telemetry data from a range of devices,
including optical transponders, Carrier Ethernet switches, and optical amplifiers. When data
is sent to message brokers like Kafka or MQTT, the Python script automatically initiates a
Telegraf instance to collect and push these metrics into InfluxDB. This setup enables real-
time data handling for applications that require immediate performance data, such as
machine learning models.

Figure 2-18: Overview – OLS Node Agent

 D4.4 GA Number 101016663

19

Additionally, the system stores historical data in a time-series database, which is
advantageous for retrospective analysis and for training machine learning models. This dual
approach supports both real-time analytics and long-term data retention, allowing flexible
data handling to meet varied application needs.

2.7 AUTONOMOUS NETWORKING AND QUALITY ASSURANCE
The monitoring and performance telemetry system developed in this consortium will enable
to close a control loop and envisage autonomous network operations.

2.7.1 Autonomous Networking
Optical Autonomous networks are based on several building blocks addressed in this project:
physical impairment modelling and performance monitoring, telemetry systems and a
control and orchestration. From these building blocks, we envisage three main architectures
to define the control loop:

 a local control loop: This scenario is leveraging some limited intelligence at the node
level. The main objective is the live optimization of a reduced set of parameters on a
lightpath. One can cite the work already achieve by the members of the consortium
on frequency optimization to mitigate the filtering penalties [Del19a], power
optimization to mitigate transient loss [Gou21] hitless baudrate switching [Dut22].

 A domain control loop: This scenario is the most common and is leveraging
intelligence in a centralized architecture. A wide-ranging set of applications for
closed loop reconfigurations can be deployed and are triggered in response to events
identified in the central Telemetry Manager. Such an architecture, while not giving
the best performance in term of reaction speed, will certainly provide the best
overall decision [Del19b].

 A multi-domain control loop: This scenario is probably the most challenging as the
parameters from one domain are not opened to the other domain and there is a
need to rely on the previously explained knowledge sharing. It is also a centralized
architecture empowered by AI/ML to have autonomous networking coordinated
across domains without exchanging internal domain details.

 D4.4 GA Number 101016663

20

Figure 2-19 Intra domain Control loop architecture

2.7.2 Single-Domain and Multi-Domain Quality Assurance
Quality assurance is based on Intent Based Networking (IBN) [IBN] applications to represent
the optical transport network (Figure 2-20). In this section, we rely on a deep learning-based
IBN application for the optical time domain, named OCATA [Rui22], which initial concept has
been developed in B5G-OPEN. OCATA is based on the concatenation of deep neural networks
(DNN) modelling optical links and nodes, which facilitates representing lightpaths. The DNNs
can model linear and nonlinear noise, as well as optical filtering. Additional DNN-based
models are proposed to extract useful lightpath metrics, such as lightpath length, number of
optical links and nonlinear fibre parameters.

OCATA includes a sandbox domain to pre-train DNN models, based on the measurements
available through telemetry. Such models are made available to IBN applications, which use
them to generate expected signals that can be compared with those obtained from the
network. In that way, deviations between the observed and the expected signals can be
detected and used for, e.g., soft-failure detection, identification, and localization.

 D4.4 GA Number 101016663

21

Figure 2-20 Intent-based networking in the intra-domain

Because telemetry and DNN models are domain internal, knowledge sharing is proposed for
the IBN applications to solve the problem of inter-domain scenarios (Figure 2-21). IBN
applications exchange their internal models for the segment of the optical lightpath in their
domain. By working on DNNs’ internal architecture to ensure not disclosing internal domain
details, such models can be shared among different domains to create end-to-end lightpaths’
models. Armed with such end-to-end lightpaths’ models, domain IBN applications can carry
out diagnosis and collaborate to localize failures.

Figure 2-21 Intent-based networking in multi-domain scenarios

 D4.4 GA Number 101016663

22

3 B5G-OPEN SOFTWARE COMPONENTS
This section lists and summarizes the main software components that have been designed,
implemented and used in B5G-OPEN WP4 and WP5, including previously existing
components that have been extended to address B5G-OPEN objectives and innovation
aspects.

3.1 B5G-ONP (ELIG)
Component Name: B5G-ONP
Summary This component is part of the control plane and orchestrates the IT and

network resources. B5G-ONP provides design, optimization and planning
tools to deploy, manage and configure services and resources, easing the
integration with external components. It includes three main modules: i)
Provisioning and Discovery module; ii) Dimensioning and analysis module;
and iii) Optical Path Computation Element. The B5G-ONP communicates
with the application/service layer (Operators) via its Northbound Interface
(NBI) and interacts with the rest of the control plane elements (PON SDN
Controller, IP SDN Controller, XR SDN Controller, TAPI Optical Network
Orchestrator, and Kubernetes) by using the Southbound Interface (SBI).

Description
and
Internal
architecture
of the
component

B5G-ONP is a control plane module which allows the coordination and
orchestration of IT and network resources and provides the design,
optimization and planning tools to deploy, manage and configure services
and resources. Additionally, the B5G-ONP will prototype a user-friendly
Graphical User Interface (GUI) aiming to improve the Quality of user
Experience (QoE) and ease the interaction with the underlying components
present in the network. Concerning process automation and Zero-Touch
management, the B5G-ONP will expose a Northbound Interface (NBI) REST
API to be used by network operators and higher-level components or
services. On the other hand, B5G-ONP uses the Southbound Interface (SBI)
to integrate with external components such as PON SDN Controller, IP SDN
Controller, XR SDN Controller, TAPI Optical Network Orchestrator, and
Kubernetes.

The B5G-ONP component is a self-contained unit that integrates different
modules to add the required functionalities and improve the network
performance by having a clear understanding of the global requirements.
The integrated modules are:

- The Provisioning and Discovery module is responsible for
orchestrating the allocation of network resources (physical and
virtual) automating the deployment and configuration based on
user requests, policies, and predefined templates. This unit scans
and imports the network segment topologies and identifies the
available services and dependencies as a centralized repository of
this information and a comprehensive platform for managing the
complex network environment for network administrators.

- The Dimensioning and analysis module is in charge of predicting and

optimising the performance of the network infrastructure by taking
decisions on capacity planning and network dimensioning. This unit

 D4.4 GA Number 101016663

23

uses data analytics and ML techniques to examine the network
traffic patterns and resource utilization to predict the performance
requirements (e.g., capacity, latency, jitter, etc.) of the network
according to the topology and application requirements.

- The Optical Path Computation Element considers technical factors

to determine the best path for the optical connections based on
available resources in the B5G-ONP reducing congestion and
improving efficiency. This module requires the previous discovery
work, estimating the performance of the different admissible paths.
B5G-ONP will analyse the performance of the new path-candidates
and establish the optimal configuration needed on the underlying
resources (e.g., Optical SDN controller) to ensure the Quality of
Transmission (QoT). This module is integrated in B5G-ONP as part
of the network orchestration easing the integration with external
components through a unique entity.

Interface
Specification

The Northbound Interface (NBI) is the top interface between the B5G-ONP
and the application and services that use the network resources based on
REST API. The GUI uses the exposed information on this interface to define
a pretty-printed schema of the network. The network operators define the
network requirements via this interface (e.g., real-time network tasks such
as the bandwidth allocation to a specific application, traffic priority, etc.),
and underlying controllers configure the network resources and policies on
network devices.

The Southbound Interface (SBI) of the B5G-ONP, on the other hand, is the
interconnection point with external components that B5G-ONP manages,
translating the high-level network requests into concrete actions in layers
below to drive the network configuration accordingly via NBI exposed by
the controllers. This interface may include the RESTCONF protocol and
different standards to enable communication with other modules such as
Transport API (TAPI) or IETF RFC8345. B5G-ONP SBI enables network
automation tasks (e.g., provisioning new network equipment, in real-time)
improving the efficiency, availability and reliability of management tasks.

The Optical Path Computation Element exposes an autonomous API,
accessed by the TAPI Optical Network Orchestrator for planning and
provisioning the B5G-OPEN networks.

Exemplary Workflow:
Once the network operator introduces the network requirements, the B5G-
ONP starts discovering the network topologies in the different segments
and continues with the analysis based on the requirements and the
available resources. Planning and dimensioning tasks, using the results of
the analysis operations, will consider the required changes in the network
to improve the performance and to meet the expected KPIs. B5G-ONP
translates the adopted solution into low-level commands/calls into
concrete actions to the corresponding control-plane entities via SBI. Once
actions are applied, the orchestrator validates and tests the network
performance under different conditions. Conversely, when external
components report metrics back to the B5G-ONP the NBI must be able to

 D4.4 GA Number 101016663

24

interpret those metrics and present them to the network administrator in a
meaningful way.

Functional
Validation

Tests done to validate the component:
- The B5G-ONP component was tested by handling the expected user

loads with minimal response times. The system effectively scaled
up or down based on demand, performed concurrency operations,
and maintained high efficiency under stress conditions.

- Discovery validations from IP and optical segments were
completed, ensuring accurate and coherent responses. The GUI
correctly imported the complete topology and displayed it in the
layout, providing a clear view of the system's status.

- Provisions were executed to the required controller for creating
new links within the topology. The GUI displayed these new links in
the layout, accurately reflecting the requested changes (see figure
below).

- The analysis module's proposals were validated against existing
network conditions, confirming that it offered optimal solutions
based on current data.

- In a Kubernetes context, tests were conducted to read the cluster's
status, deploy new services or deployments, and verify the correct
implementation and status of these services (see figure below). All
operations were executed successfully and validated.

 D4.4 GA Number 101016663

25

Component
Integrations

B5G-ONP using the exposed SBI allows the task automation with the
following modules:

- PON SDN Controller allows the network management and
automation of this domain using the available tools and platforms
via the NBI of the PON SDN Controller

- IP SDN Controller supplies all the IP-based information and presents

an API to read the state of the resources and provision new IP-
related services.

- XR SDN Controller provides a centralized point of control for XR

network resources in point-to-point or point-to-multipoint
connections via the NBI exposed by the unit.

- TAPI Optical Network Orchestrator offers a uniform, open and

standardised way to obtain information from subsystem and sub-
controllers to B5G-ONP according to TAPI 2.1, and the exposed API
by the module.

- Kubernetes cluster (K8s) connected with B5G-ONP to automate the

deployment, scaling, and management of applications to build
more efficient and scalable IT infrastructures. The orchestrator, via
kube-apiserver, addresses their tasks related to i) service discovery
and load balancing, ii) configuration management, iii) security and
access control, and iv) K8s monitoring and analytics.

Component
KPIs

The KPIs measured are:

- Discovery time: The time elapsed from when a network operator
sends the discovery command until all layers of the topology are
imported into B5G-ONP. This period varies from seconds to several
minutes depending on factors such as network size, complexity, and
the efficiency of the orchestrator.

o Several measurements were taken, and discovery times
differed based on the scenario and the controller being
integrated. In a simple experiment, the average metrics
were as follows:

 TAPI Optical Network Orchestrator: 300 ms
 IP SDN Controller: 4 seconds
 Kubernetes Cluster: 2 seconds

 D4.4 GA Number 101016663

26

- Provisioning time: The time from when a change occurs to a
network resource or service until it becomes fully operational again.
This period starts when B5G-ONP receives an instruction from the
network operator or after the analysis task, when the orchestrator
performs actions based on the analysis results. The time depends
on the complexity of the network and services.

o Multiple evaluations were performed. The time required
for provisioning varied depending on the controller and the
network size. From the project experiments, the following
mean baseline values were recorded:

 DSR provisioning: 237 ms
 OLS path provisioning: 110 ms
 IP BGP adjacency provisioning: 4 seconds
 Reconfiguring OLS path provisioning: 200-300 ms
 Kubernetes Deployment: 150 ms
 Kubernetes Service: 100 ms

- Optical Path Computation Element (PCE) latency: The time required
to compute a path, which is directly proportional to the number of
network elements involved and the traffic load on the network.

o Multiple evaluations were conducted during the project
experiments. The computation time varied significantly
based on the number of nodes and connections present in
the network.

 PCE: average of 200 ms
 Multiband-PCE: average of 600 ms, depending

directly on the time consumed by the MB-PCE
when requesting the optical context.

Status,
availability,
repository

E-Lighthouse Network Solutions SL proprietary software.

Additional
Remarks

List of applicable publications:
- Integration with B5G-ONP for multi-domain networks: [Cas24a]
- Final demonstrations: [Mor24]

3.2 TAPI-ENABLED OPTICAL NETWORK ORCHESTRATOR WITH EXTERNALIZED PATH

COMPUTATION (CTTC)
Component Name: TAPI-enabled Optical Network Orchestrator with externalized Path
Computation

Summary The TAPI-enabled Optical Network Orchestrator is a functional element

of the architecture that is responsible for the following functions: i)
providing a uniform, open and standard view and interface to the higher
levels and components of the B5G-OPEN control, orchestration, and
telemetry system; ii) Compose a complete Context to be consumed by
B5G-OPEN network planner and additional consumers combining
information retrieved from subsystems and sub-controllers (Optical
Controller, external databases, monitoring systems, etc), iii) Enable single

 D4.4 GA Number 101016663

27

entry point for provisioning DSR and Photonic Media services, including
externalized path computation and iv) provide an event telemetry data
source that reports events that happen asynchronously in the network.

Description
and
Internal
architecture
of the
component

The core of the TAPI Optical Network Orchestrator controller is an
asynchronous event loop. On the one hand, it exports multiple services
via its multiple North Bound Interfaces (NBI) to users or clients, using
RESTCONF/YANG. The most relevant services are Topology Management,
Connectivity Service Management and Path Computation.

The RESTCONF server is responsible for processing requests using the
RESTCONF protocol. The planned Yang models are a subset of the ONF
TAPI v2.1 Requests are mapped to internal structures and processed by
functions in the event manager.

The controller is a multi-threaded application, written in C++ (C++20). It
targets GNU/Linux systems (e.g., Ubuntu 20.04 and later) and can be
executed as docker containers. The design is highly modular, so
additional functionality can be implemented as shared link libraries that
can be configures and loaded on demand.

 D4.4 GA Number 101016663

28

Interface
Specification

The Interfaces that have been developed and tested are the following

 The TAPI Optical Network Orchestrator receives a new
connection request with some requirements (source and
destination, bandwidth provision, latency constraints, QoT
conditions, etc.). The client of this interface is the B5G-ONP and
uses TAPI 2.1 for this purpose.

 The interface from the TAPI Optical Network Orchestrator to the

optical controller is based on the ONOS native interface,
extending the existing implementation to support additional
requirements and use cases.

 The interface from the TAPI Optical Network Orchestrator to
path Computation Engine is based on a specific instance of path
computation interface defined in TAPI.

 Additional interfaces have been defined to support the
augmentation of topological elements with physical layer
information data.

 The interface towards the Telemetry System relies on acting as a
REDIS client sending telemetry information following the TAPI

 D4.4 GA Number 101016663

29

Reference Implementation Agreement (RIA) for streaming TR-
548

Functional
Validation

Tests done to validate the component:

 Launch the TAPI orchestrator and retrieve the topology in terms
of nodes and links and display this information. This test shall be
carried out: i) loading the information from a set of JSON files
that have previously been retrieved and ii) performing dynamic
loading of links and related data from the ONOS instance.

 Retrieve the TAPI context from the TAPI orchestrator and
validate the topology in terms of nodes and links. Validate that
the TAPI context is correct and consistent and can be consumed
by: i) B5G-ONP clients as well as ii) Path Computation Elements

 Load a topology and validate that the TAPI orchestrator is able to
report Telemetry data to the REDIS database that is part of the
Telemetry System

 Perform an externalized path computation and validate the
function using an external PCE with TAPI enabled interface

 Perform the provisioning of services

See the list of publications showing the integrations and evaluation of the
component.

Component
Integrations

The TAPI-enabled optical network orchestrator integrates with the
following elements:

 The B5G-ONP. This functional entity is the main client of the
controller. The B5G-ONP performs requests related to service
provisioning in the optical network, using TAPI and requesting
DSR connectivity services

 The Optical Path Computation Element (PCE). The network
orchestrator relies on a dedicated system for externalized path
computation. For this, it uses extended TAPI interfaces for the
purposes of topology discovery and path computation functions.

 The Telemetry system to act as a data source for the reporting of
events. This means that the TAPI orchestrator sends JSON
encoded telemetry data to clients, such as OSS or data
visualizers.

 The ONOS SDN controller that takes care of provisioning
connectivity by means of optical connectivity intents, using a
dedicated interface. The interface shall be augmented to support
the specification of a computed path (in terms of links as well as
frequency ranges for the optical media channel to be used).

 D4.4 GA Number 101016663

30

Component
KPIs

The KPIs to be measured are:

 Service Provisioning Latency (< 10 min with hardware and < 30
seconds with emulated hardware). This is the time it takes to
provision an optical service.

 Service Provisioning Overhead – In terms of messages, message

size, encoding, etc. This includes a characterization of the
protocol overhead (e.g., HTTP, RESTCONF, etc).

 Path Computation Latency – measured as the time it takes to
perform a path computation with a dedicated PCE. This is to be
evaluated.

Integration with Path Computation
We developed the necessary extensions to the current ONF Transport API
v2.1.3 photonic media layer models to support the dynamic provisioning
of services of MB-WRN networks exploiting a MB-PCE. The development
of these extensions is a challenging task as it requires to provide
extensions a larger number of system parameters. The emulated network
is BT’s optical mesh that consists of 22 ROADM nodes, 56 amplifiers, 28
terminal devices (106 network elements in total) and 238 unidirectional
links. For the scope of this experiment, it is assumed that each link may
support E, S, C and L bands.

The MB-PCE latency for scenario C was measured to be in the range
between 1.8 – 2.2 seconds. This parameter value depends on whether
the MB-PCE is also tasked to retrieve the network topology as explained
above (first request in the series). On the contrary, this latency is two
orders of magnitude lower, ranging between 17 ms and 36 ms, when the
network status was already up to date (assuming state synchronization).
In contrast, for scenarios A and B, the deliberate degradation of the
OSNIR rendered a large number of the listed frequency slots as
‘unavailable/void’, so the RMSA algorithm had to execute the PHY layer
validation process thousands of times resulting to considerable delays for
the MB-PCE to return results. For these two scenarios A and B, the latency
is measured to be between 2.5 and 3.2 seconds.

Integration with B5G-OPEN in multi-domain transparent networks:

 D4.4 GA Number 101016663

31

In this scenario, we provision first a service between 2 transceivers in the
same domain. The allocated path uses the O-band since the a-posteriori
QoT validation (in terms of OSNR, PMD, CD and power levels of the signal)
is within the receptor tolerances and a second test is between 2
transceivers that are not in the same domain, and, in this case, the
selected band is the C-band. For assessing the control plane latency
values coming from the topology discovery, algorithm computation and
provisioning phases, we provide in Table 1 averaged values coming from
10 repetitions of the tests. Note that: (i) discovery and provisioning
phases are relatively fast, since they operate on an emulated hardware,
(ii) path and spectrum computation benefit from an optimized
implementation of the algorithms, and a simplified impairments
calculation that does not consider in this setup the Raman scattering
effects. Note that by having a parallelized behaviour of the requests,
overall latency is minimized with regards to the serialized setup and
values from ENP are affected by Internet latency.

 Measured at
VPN / OLS
(milliseconds)

Mean value ENP
(milliseconds)

Discovery context 280 (empty)
492 (services)

931

Single-domain
provision

2.5 (O-band) 309

Multi-domain
provision

56 (C-band)
parallel

515

B5G-OPEN Demo
In each domain, the optical path set-up provisioning time is less than 1
second. Moreover, PCE latency is measured to be in the range between
0.5s and 0.6s and it is due to: a) the time needed to retrieve network
topology and; b) the time needed for the PLI-aware RSA algorithm to
return the selected path, band, channel frequency assignment, and
optimal launch powers. The IP/BGP and pluggable configuration requires
less than 4 seconds

Integration with Nokia Chromatic Dispersion based algorithms

Status,
availability,
repository

CTTC Proprietary software

Additional
Remarks

List of applicable publications:

- Integration with Path Computation Elements: [Kos23]

- Integration with S-BVT Open Config agents: [Cas24b]

 D4.4 GA Number 101016663

32

- Integration with B5G-ONP for multi-domain networks: [Cas24a]

- Final demonstrations: [Mor24]

- Final demonstrations: [Boi24]

3.3 PATH COMPUTATION ELEMENTS – MB-PCE – (OLC-E)
Component Name: Multi-Band Path Computation Engine (MB-PCE)

Summary The Multi-Band Path Computation Engine (MB-PCE) is based on a multi-

band routing engine which ensures that: i) routing is implemented by
means of an efficient spectrum and modulation-format assignment; and
ii) the impact of physical layer effects over the selected optical paths is
estimated and the results are benchmarked against QoT target values
(BER, OSNIR, OSNR, etc). In this way, the planning tool ascertains the
conditions that maximize the total capacity of the network while it
minimizes the global blocking probability and prevents network
misconfiguration.

Description
and
Internal
architecture
of the
component

The MB-PCE functionality is realised in three stages as follows:
STAGE-I: Network Topology Implementation: the network topology is
defined by setting the connectivity pattern between the nodes and the
traffic matrix. Next, the k-shortest paths for all network node pairs are
derived. More specifically, in this step, the following quantities are
defined: the network topology including nodes, edges and amplifiers, the
available optical bands, the capacity per band, the traffic matrix, the
average time duration of the demands and the average inter-arrival time
between two consecutive demands, as well as the available line-rates
and their distribution on the demands.

 D4.4 GA Number 101016663

33

STAGE–II: Spectral and Modulation Assignment (SMA) and PL
entanglement: the operation is completed in two steps: In the first step,
i) a preliminary spectrum and modulation format assignment (SMA) is
made for a number of the k-shortest paths, and ii) the Optical Signal to
Noise plus Interference Ratio (OSNIR) for these shorter paths is estimated
taking into account the impact of the physical layer effects by means of
closed-form expressions.
In the second step, the Optical Multi-band Physical Layer Aware Routing
Modulation and Spectral Assignment (OMB-PLA-RMSA) algorithm either
selects or rejects a lightpath. A path is rejected if a) no contiguous
spectral slots are available in any optical band to support the end-to-end
connection, b) either the OSNIR of the candidate lightpath falls short of
the QoT estimator threshold or the OSNIR of at least one of the already
established lightpaths would perform below the QoT threshold due to
the presence of this candidate lightpath. In either (a), (b) cases, the
rejected lightpath is assigned the next available path from the sorted list
of k-shortest paths and it is then re-iterated. If these paths are all
rejected, the first step is repeated using a lower cardinality SMA values.
If no path is retained, the engine registers a blocking condition.
STAGE–III: Path Allocation: This is the stage where the lightpaths are
established in the network. The final assessment on network’s
throughput is completed and a lightpath is successfully set if contiguous
spectral slots are available over the end-to-end transparent path with
acceptable physical layer performance (above the QoT estimator
threshold). The successful establishment of a lightpath triggers the
update of the corresponding arrays for each link of the path, e. g., arrays
of power, modulation format, consumed frequency slots.

Interface
Specification

Interfaces developed and tested:

- The MB-PCE uses two interfaces to communicate with the TAPI
Optical Network Orchestrator

- The first interface is based on TAPI v2.1 and it is exposed by the

TAPI Optical Network Orchestrator. MB-PCE uses this interface in
order to retrieve the current optical network topology and
status.

- The second interface is exposed by the MB-PCE. It is again based

on TAPI v2.1 and it is used by the TAPI Orchestrator. The TAPI
Orchestrator request a path computation from the MB-PCE. The
MB-PCE analyses the request and computes the optimum path
and send this information back to the TAPI Orchestrator.

Functional
Validation

Tests that can be done to validate the component:

- Launch the MB-PCE and retrieve the topology from TAPI Optical
Network Orchestrator in terms of nodes and links and display this
information. This test shall be carried out: i) loading the
information from a set of JSON files that have previously been

 D4.4 GA Number 101016663

34

retrieved and ii) performing dynamic loading of links and related
data from the TAPI Optical Network Orchestrator.

- Retrieve a new service request from TAPI Optical Network

Orchestrator and validate that: a) the path is properly estimated;
b) the correct band is selected; c) the number of frequency
allocations units are correctly assigned; d) the correct
frequencies are assigned to the service; e) the correct message is
generated and send back to TAPI Optical Network Orchestrator.

Component
Integrations

The MB-PCE integrates with the following elements:

- The MB-PCE communicates with the TAPI Optical Network
Orchestrator to realise two functionalities: a) Retrieve optical
network topology; b) Path computation for a new service
request.

- Initially, MB-PCE communicates with the TAPI Optical Network

Orchestrator using the TAPI v2.1 interface to retrieve the current
optical network topology context and status.

- Then, MB-PCE receives a new service request from the TAPI

Optical Network Orchestrator using the TAPI v2.1 interface. The
MB-PCE compute the optimum path and send this information
back to the TAPI Optical Network Orchestrator,

Component
KPIs

The KPIs measured are:

1. Path Computation Latency
This is the time it takes to MB-PCE to compute the path of a new service
request, measured from the timestamps between request and response
with a target value of < 40s.

 Several scenarios were executed. The MB-PCE Path Computation

Latency was measured to be in the range between 1.8 – 3.2 seconds

2. TAPI Topology retrieval and parsing Latency
This is the time it takes to MB-PCE to retrieve and parse the optical
network topology context (described using the TAPI format), measured
from the timestamps between request and response, with a target value
of < 20s.
 Several scenarios were executed. The MB-PCE Topology retrieval and

parsing Latency was measured to be in the range between 0.9 – 2.5
seconds

Status,
availability,
repository

OLC-E Proprietary software. The pseudocode of the algorithms together
with a thorough description has been published in [Kos23] and D4.2.

 D4.4 GA Number 101016663

35

Additional
Remarks

Some results were published in [Kos24:]
Measurements were made of the optical SDN controller and the MB-PCE,
connected via tunnels over the public Internet. The emulated network
consisted of 22 ROADM nodes, 56 amplifiers, 28 terminal devices (106
network elements in total) and 238 unidirectional links assumed to
support the E, S, C and L bands.
Three scenarios were presented, with the routing engine of the MB-PCE
instructed to check the potential of the available bands to support service
connection requests, searching over multiple transmission bands in the
case of misconfigurations that could be either due to an erroneous data
exchange between the MB-PCE elements or even the result of
deliberate/malicious acts. The first scenario investigated the impact of a
deliberate or accidental physical layer misconfiguration instruction on
the completion (or not) of service requests in the case of fully transparent
paths. In the second scenario was similar but the deliberate
misconfiguration of the PHY parameters was less dramatic, while in the
third scenario the parameters were within acceptable but suboptimal
ranges.
In the more realistic third scenario, the MB-PCE latency was measured to
be in the range between 1.8 – 2.2 seconds. In contrast, for the other two
scenarios with deliberate misconfigurations, the RMSA algorithm had to
execute the PHY layer validation process thousands of times and the
latency was higher, measured to be between 2.5 and 3.2 seconds.

3.4 OPTICAL CONTROLLER (CNIT)
Component Name: ONOS optical controller

Summary The optical controller is based on ONOS SDN controller that provides a

wide environment that is used to control and configure optical devices
and transceiver equipped within packet/optical white boxes. In
particular, the main roles of the optical controller are: (i) retrieve devices
description from data plane and abstract them toward the upper control
layers; (ii) receive the service configuration requests by the upper control
layers and translate such requests in a set of configuration messages to
be forwarded to each involved device.

Description
and
Internal
architecture of
the
component

The 3.0 version of ONOS that we considered at the beginning of the
project already provides a rich NBI based on REST APIs and, on its SBI it
is already able to connect to a variety of packet-based and optical devices
(e.g., exploiting NETCONF protocol). The ONOS core already implements
the basic connectivity services using the concept of intent that simplify
and automate the service management (e.g., in case of network failure).

During the project, several developments within the ONOS controller
have been implemented at different levels of the ONOS architecture (i.e.,
in the NBI, in the SBI and in the Core) for introducing B5G-OPEN specific
features:

1. Enable integration with T-API orchestrator (NBI)

 D4.4 GA Number 101016663

36

2. Develop drivers toward new devices and update existing drivers
against most recent versions of standard models (SBI)

3. Introduce the support of flexible grid (NBI, core, SBI)
4. Introduce the support of multi-band (NBI, core, SBI)
5. Import/Export physical impairment device manifest (SBI, NBI)
6. Activate intents using as end-points the ROADM’s ports (Core)

In the figure below the aforementioned development (from 1 to 6)
targets are mapped within the ONOS architecture, where each number
is reported in the affected blocks. Blocks reported in white are not
modified during the project, block reported in green have been upgraded
during the project, while blocks reported in orange have been created
from scratch during the project.

Interface
Specification

The ONOS optical controller integrates with the following elements:

 The TAPI-enabled optical network orchestrator. This entity will
use REST APIs. 1) It will use POST (and DELETE) calls to perform
requests related to service provisioning (and deletion) in the
optical network. 2) it will use GET calls to retrieve information
regarding network topology and details regarding links and
devices.

 The optical devices (i.e., packet-optical nodes, transponders,

ROADM and OLS). Such devices expose to the controller a YANG
models and provide a NETCONF server. The ONOS controller

 D4.4 GA Number 101016663

37

uses a NETCONF client to retrieve information and configure the
devices.

Functional
Validation

The component has been utilized in several of the experimental
demonstrations conducted during the project (e.g., in TIM and HHI)
moreover it has been experimentally demonstrated in international
conferences (e.g., [Gio23]). In these contexts, the following functional
validations have been conducted multiple times and testified the
reliability of the developed software.

 Network discovery (mainly involve SBI), emulated environment.
Launch the ONOS controller, including required applications and
drivers. Post an emulated network topology including devices
and links. Verify that all devices are correctly discovered,
including interfaces and augmented details (e.g., related to
physical impairments).

 Network abstraction (mainly involve NBI), emulated
environment. After network initialization verify that all the
acquired information regarding devices is correctly exported in
the REST APIs toward upper layers.

 Service provisioning and releasement (involve NBI, core and SBI),

emulated environment. Receive an intent request from the TAPI
orchestrator (for several types of intent). Verify that the intent is
correctly installed and that all involved devices are correctly
configured. Cancel the configurations when an intent deletion
request is received.

 Device tests (mainly involve SBI), real devices. Push a specific
device, test connectivity, device discovery and the ability to
properly discover all the device details.

Component
Integrations

Other components this component is integrated with:
 The TAPI-enabled optical network orchestrator.
 OpenROADM agent (ROADM by TIM)
 OpenConfig agent (Transponder by CTTC)
 OpenConfig agent (Pluggables in SONiC devices by CNIT)

Component
KPIs

Set of component KPIs that have be measured during experimental
demonstrations:

 Time required for network discovery:
o Measured in the order of tens of seconds, always lower

than one minute.
 Physical activation delay for an optical intent:

o Measured in the order of one-two minutes mostly
depending on the utilized transceivers.

 Time elapsed in the controller:
o Measured in the order of one second.

 D4.4 GA Number 101016663

38

 Time elapsed for configuration of devices:
o Devices typically confirm the reception of a

configuration message in the order of few hundreds of
milliseconds.

Status,
availability,
repository

ONOS version 3.0 has been forked at the beginning of the project. A
version with all the software contributions developed during B5G-OPEN
project (and all scripts utilized during experimental demonstrations) is
currently available in the following public repository:
https://github.com/Network-And-Services/onos-b5g-open

Additional
Remarks

Selected components the developed software have been contributed to
the open-source ONOS community and are now part of the official ONOS
distribution:
https://gerrit.onosproject.org/c/onos/+/25681
https://gerrit.onosproject.org/c/onos/+/25616
https://gerrit.onosproject.org/c/onos/+/25596
https://gerrit.onosproject.org/c/onos/+/25594
https://gerrit.onosproject.org/c/onos/+/25593
https://gerrit.onosproject.org/c/onos/+/25168

3.5 ACCESS CONTROLLER / PON CONTROLLER (OLC-E)
Component Name: Access Controller / PON Controller

Summary The B5G-OPEN TDM-PON infrastructure is realised using an XGS-PON OLT

pluggable transceiver (e.g., TiBit pluggable) and a couple of pluggable ONUs
(e.g., Tibit ONUs). The OLT is interfaced directly to a whitebox switch while
the OLT is interconnected to the ONUs by means of splitters, forming up an
ODN branch. Τhe PON vendor (Tibit) will provide the pluggable software
and the PON controller software. The integration of Tibit PON Controller
with the B5G OPEN platform is realised with the development of an Access
Controller as illustrated in the below figure. The Access Controller is
responsible to: a) monitor the PON network and receive any requests for
PON reconfiguration; b) translate these requests into high level traffic
requests that is reported to the B5G-ONP App; c) execute the appropriate
actions in the PON Controller in order to support the new requests.
In addition, the Access Controller will communicate with the LiFi Controller
for retrieving any connection/traffic requests.

 D4.4 GA Number 101016663

39

Description
and
Internal
architecture
of the
component

The Access Controller is developed as part of the B5G-OPEN software
platform, and it will provide the below functionalities:

 On the South Bound Interface (SBI), the Access Controller will
communicate with the vendor specific PON Controller using a
subset of the BBF/ITU YANG models. The SBI that communicates
with the PON Controller is a software client that is developed based
on OLT PON SDK.

 On the South Bound Interface (SBI), the Access Controller will
communicate with the LiFi Controller using REST/JSON for receiving
any connectivity/traffic requests generated in the LiFi network.

 The Access Controller implements a set of: a) PON abstraction
functions which are responsible to extract the PON parameters and
their values; b) LiFi abstraction functions for extracting LiFi traffic
parameters. In addition, the PON and LiFi abstraction functions will
expose to the higher layers only the valuable for the B5G-OPEN
software platform set of parameters.

 On the Northbound Interface (NBI), the Access Controller
communicates with the B5G-ONP app. The NBI implements a
REST/JSON server which will support the exchange of traffic related
information adopting a data structure defined in B5G-OPEN
project.

Interface
Specificatio
n

Interfaces developed and tested:

- The Access Controller communicates with the PON Controller
(Tibit) using the OLT PON SDK.

- The Access Controller communicates with the LiFi Controller using

REST/JSON

- The Access Controller exposed one interface toward the B5G-ONP
app component. The interface is realised using REST/JSON.

 D4.4 GA Number 101016663

40

Functional
Validation

Tests that can be done to validate the component:

- Deploy the PON network including the XGS-PON OLT pluggable
transceiver and a couple of pluggable ONUs. Launch the PON
Controller. Then launch the Access Controller and test that: a) the
Access Controller communicates successfully with the PON
Controller; b) the Access Controller retrieves the PON configuration
information.

- Deploy the PON network and launch both the PON Controller and

LiFi Controller. Then launch the Access Controller. Then LiFi
Controller will generate a new traffic request and send to Access
Controller. Then test that: a) the Access Controller receives
successfully the request and parse all its data; b) translate the new
request into a high level traffic request; c) deliver the high level
traffic request to the B5G-ONP app using the NBI; d) execute the
appropriate reconfiguration actions in the PON Controller; e)
observe that the new PON configuration is realised in the testbed.

Component
Integrations

The Access Controller integrates with the following elements:

- The vendor specific (Tibit) PON Controller using the SBI.
Communication realized using OLT PON SDK.

- The LiFi Controller using the SBI. Communication using REST/JSON.

- The B5G-ONP app using the NBI. Communication using REST/JSON.

Component
KPIs

The KPIs measured are:

1. PON Reconfiguration Latency
This is the time it takes for the actual reconfiguration of the PON network,
Measured as time difference between the request timestamp and response
timestamp, with a target value of < 20s.

Initially, we measured latencies for retrieving the configuration and status
information from different elements in the PON network. In detail:
• Login: 160 – 200 ms
• Retrieving Controller configuration: 206 - 290 ms
• Retrieving OLTs configuration: 160 – 220 ms
• Retrieving ONUs configuration: 130 - 220 ms
• Retrieving configuration of selected OLT: 160 - 190 ms
• Retrieving configuration of selected OLT: 123 - 180 ms
• Retrieving SLAs: 130 - 310 ms
• Retrieving configuration of selected SLA: 150 - 204 ms

In addition, the PON Reconfiguration Latency is measured in terms of
reconfiguring the SLAs that defines the OLT upstream and downlink
bandwidth profiles:

 D4.4 GA Number 101016663

41

• PON Reconfiguration Latency (SLA update and application): 450 -
600 ms

All the measured values are below 1s, therefore far lower than the target
of 20s.

2. Access Controller Latencies
This is the time it takes to Access Controller to execute different
functionalities including: a) to receive a new request and parse all its data;
b) to translate the new request into a high level traffic request; c) to deliver
the high level traffic request to the B5G-ONP app; d) to execute the
appropriate actions in the PON Controller. The latency is measured from
the timestamps between request and response or timestamps between
starting and completing a specific task.

Here are the values reported in the Berlin Demo (WP5):
 Authentication: 234 ms – 790 ms
 PON SLA creation: 187 ms – 781 ms
 ONU SLA configuration: 316 ms – 529 ms
 Logout: 71 ms – 514 ms
 Send access traffic descriptor to B5G-ONP app: 51 ms – 79 ms
 Response from B5G-ONP app: 53 ms – 7260 ms

Status,
availability,
repository

OLC-E Proprietary software

Additional
Remarks

Details on the access controller latencies will be presented in D5.2 “Final
experimental B5G-OPEN validation.”

3.6 LIFI CONTROLLER (PLF)
Component Name: LiFi Controller

Summary The LiFi controller for managing LiFi APs with LiFi agents is a simple

controller that allows for device discovery and configurations such as
accessing SSIDs, IP addresses, and enabling/disabling APs. It is positioned
between the PON controller and the LiFi agents, and it is designed to be
lightweight and efficient with minimal processing requirements.

Description
and
Internal
architecture of
the
component

The LiFi controller communicates with the LiFi agents on the LiFi APs
using NETCONF protocol, allowing for centralized management and
control of the network. The controller includes a REST API for
programmatic control and integration with the PON controller.
The LiFi controller would be capable of the following functions:
 Network Topology Discovery: The LiFi controller is able to discover

the topology of the network, including all devices and links between
them.

 Network Configuration Management: the LiFi controller is able to
configure the LiFi APs via the LiFi agents, by sending commands

 D4.4 GA Number 101016663

42

through the SBI. The configurations supported include
accessing/modifying SSIDs, IP addresses, enabling/disabling APs.

 Network Monitoring: the LiFi controller is able to monitor the
throughput and latency of the LiFi APs.

Network Automation: The LiFi controller is able to automate network
operations, such as provisioning or configuration, to reduce manual
effort and improve efficiency.

Interface
Specification

The LiFi controller uses two main interfaces for communication with the
PON controller and the LiFi agents:
 REST API (NBI): The REST API provides a simple and standardized way

for external applications and systems to interact with the LiFi
controller. The REST API uses HTTP/HTTPS as its transport protocol
and supports a range of operations, including GET, PUT, POST, and
DELETE. Using the REST API, external applications can retrieve
information from the controller, configure the LiFi APs, and monitor
the status of the LiFi network.

 NETCONF (SBI): The NETCONF protocol provides a standardized way
for the LiFi controller to communicate with the LiFi agents. NETCONF
uses XML-based messages over SSH or TLS to perform operations
such as configuration, monitoring, and software management. The
use of NETCONF as the SBI ensures that the SDN controller can
communicate with the SDN agents in a secure and reliable manner.
Currently the configurations to be supported including the access
and modifications on the SSIDs, IP addresses, as well as
enabling/disabling the APs.

By using both REST API and NETCONF, the LiFi controller can provide a
flexible and scalable solution for managing the LiFi APs with LiFi agents.
The REST API enables easy integration with external systems and
applications, while NETCONF provides a robust and standardized
interface for communication with the LiFi agents.

Functional
Validation

Several tests can be performed to validate the functionality and
performance, which include:
Basic functionality test: this test ensures the LiFi controller is able to
performance the basic functions such as discovering all connected LiFi
agents, accessing/modifying SSIDs, IP addresses, and enabling/disabling
APs, etc.
Integration test: This test ensures the LiFi controller is able to integrate
with PON controller via the REST API.

 D4.4 GA Number 101016663

43

Scalability test: This test evaluates the ability of the controller to handle
multiple LiFi APs with LiFi agents.

By performing these tests, the LiFi controller can be validated for its
functionality, performance, and reliability, ensuring that it meets the
requirements for managing LiFi APs with SDN agents

Component
Integrations

The LiFi controller has been installed in the VM provided by HHI. It has
been tested with several LiFi APs with LiFi agent implemented. On the
other side, the LiFi controller communicates with the Access controller.

Component
KPIs

Some key indicators showing in the functional validation:
Device Management Accuracy: Upon LiFi switched on, it should be
discovered and recognised by the controller. And the controller should
be able to manage devices correctly. This KPI assesses how accurately
the controller works and manages device states. No failure was observed
in normal working conditions.
Scalability: Evaluate the controller's ability to scale by managing an
increasing number of LiFi devices without performance degradation. It
has been tested for up to three devices in lab condition.
Latency: the latencies that the controller responds to user’s request. This
is measured between 10~70 ms, excluding any NETCONF sessions
accessing the LiFi agent.

Status,
availability,
repository

Status: The controller has been implemented, applied and tested in the
project.
Availability: The LiFi controller is based on ONOS which is available to
public. This controller has not been made publicly available yet as it is
designed for managing the LiFi agent which is product specific.

Additional
Remarks

No additional remarks

3.7 LIFI AGENT (PLF)
Component Name: LiFi Agent

Summary The LiFi agent for managing LiFi APs is a software component that runs

on each AP and communicates with the LiFi controller via the Netconf
protocol. The agent is responsible for managing the network
configuration of the AP, including SSIDs, IP addresses, and other basic
parameters.

Description
and
Internal
architecture of
the
component

The LiFi agent for LiFi APs provides a standardized and programmable
interface for managing network configurations, allowing network
operators to automate the configuration and management of the LiFi
networks.

The LiFi AP consists embedded Linux system and it has been
implemented for network configuration management based on the

 D4.4 GA Number 101016663

44

NETCONF protocol by using sysrepo, netopeer2-server, netopeer-cli and
sysrepo-plugin.

Interface
Specification

The NETCONF protocol was used which provides a standardized way for
the LiFi agents to communicate with the LiFi controller. NETCONF uses
XML-based messages over SSH or TLS to perform operations such as
configuration, monitoring, and software management.

A LiFi specific YANG model has been implemented to manage the LiFi
APs. The LiFi YANG model is called plf-lifi and is illustrated in figure below.

Functional
Validation

The LiFi agent has been validated on completing the designed functions
together with the implemented LiFi controller, including:

 Retrieve device information
 Modify device information
 Remove device information
 Collect and prepare device telemetry data for transferring to LiFi

controller and the Access controller.
 Scalability Tests: These tests validate that multiple LiFi APs with

multiple LiFi agents are able to work with one LiFi controller,
without experiencing performance issues or errors.

Component
Integrations

The LiFi Agent has been applied to multiple LiFi APs and communicates
with the LiFi controller via NETCONF interface.

 D4.4 GA Number 101016663

45

Component
KPIs

Several KPIs for validating the developed agent:

 Device Recognition Success Rate: Measure how often the agent

successfully recognizes and interfaces with devices. No failure was
observed on recognising the LiFi APs.

 Configuration Accuracy: Evaluate how accurately the agent applies
the configuration changes to the devices and no failure observed.

 Stability: while applying the agent in multiple LiFi AP devices,
evaluate how reliable and stable the agent is. It has been tested with
up to three LiFi APs in lab condition.

 Latency: The latencies for accessing the LiFi AP is measured between
5~20 ms, while the latency for having a NETCONF session is typically
30~71 ms. In worst condition that the light communication path is
partially blocked, 150 ms has been observed.

Status,
availability,
repository

Status: The agent has been implemented, applied and tested in the
project.
Availability: The agent will not be public available. It is an enhancement
to current LiFi product and will be applied to the APs for NETCONF
support.

Additional
Remarks

No additional remarks

3.8 OPENROADM AGENT (TIM)
Component Name: TIM OpenROADM Agent

Summary The TIM OpenROADM agent is an implementation of a NETCONF server

controlling optical network elements using OpenROADM device models.
It’s basically an evolution of the agent developed for the H2020 Metro-
Haul project enhanced to cover MultiBand technology exploiting the
latest OpenROADM models.

Description
and
Internal
architecture
of the
component

The OpenROADM agent exploits the transAPI framework available for
Netopeer, an open source implementation of the NETCONF protocol. The
transAPI allows invoking call-back functions whenever an edit-config rpc
operation performs changes on a specific branch of the configuration.
Starting from this feature, the agent implements call-back functions that
manage the controller requests for the creation of the interfaces that,
according to the OpenROADM device model, are required for connection
and optical channel setup.
To decouple the OpenROADM model processing from the action
required by the underlying hardware, the agent architecture leverages
on the Linux dynamic libraries subsystem to load specific drivers at
runtime. The drivers are associated to circuit-packs, an OpenROADM
entity used to model atomic elements inside a device that, according to
the model, must have a type attribute. For the agent, every circuit-
pack-type can have its specific driver that is loaded by the main module

 D4.4 GA Number 101016663

46

when an edit-config rpc creates the first circuit-pack of that type.
The following figure shows the agent architecture applied to a ROADM
architecture.

Interface
Specification

The OpenROADM agent has two different interfaces: a NorthBound
interface towards an SDN controller and some SouthBound interfaces
towards the data plane devices.

The NBI is a NETCONF/YANG interface implementing the OpenROADM
device models. For the B5G-OPEN project, the agent has been upgraded
to the 12.1 device model in order to incorporate all the latest
enhancements dedicated to the multiband technology.
The YANG models that are involved (directly or because imported by
other models) are:
org-openroadm-device.yang
org-openroadm-network-media-channel-interfaces.yang
org-openroadm-media-channel-interfaces.yang
org-openroadm-prot-otn-linear-aps.yang
org-openroadm-port-capability.yang
org-openroadm-rstp.yang
org-openroadm-otn-odu-interfaces.yang
org-openroadm-otn-otu-interfaces.yang
org-openroadm-optical-transport-interfaces.yang
org-openroadm-lldp.yang
org-openroadm-ethernet-interfaces.yang

The SBI is a proprietary interface based on function calls. A driver module
implements functions to perform actions on the circuit-packs composing
the device. For example, a ROADM degree can be composed of WSSes
and amplifiers modelled as programmable circuit-packs and a dedicated
driver can be written for configuring them. The functions that a driver
can implement are the:

 D4.4 GA Number 101016663

47

 init: called during agent start-up to set up the internal
communication session between the agent and the circuit-pack
and to perform initial circuit-pack setup.

 close: called at agent closing to free all the allocated resources.
 get_inventory: called when the agent needs circuit-pack

inventory information.
 get_port_operational_state: called to get the operational state

of a port.
 get_port_mc_capabilities: called by the agent to retrieve the

optical capabilities (in terms of supported bands) of a device’s
port.

 make_connection: cross-connection (spectral window) creation
between circuit-pack ports.

 delete_connection: cross-connection removal.

To cope with circuit packs that are not programmable (such as mux-
demux), all functions are optional, but the followings constraints apply:

 If init function is defined the close function must be present.
 If make_connection is defined the init function must be present.
 If make_connection is defined the delete_connection function

must be present.

It’s worth specifying that the agent software architecture is flexible
enough to manage devices composed of circuit-packs from different
vendors and allows easy implementations of emulators, since it is
possible to create “dummy” drivers that perform no actions. This feature
has been exploited to control TU/e hardware prototypes.

Functional
Validation

The tests that can be done to validate the OpenROADM agent are the
following:

 Startup of the netopeer-server daemon and loading of the
transAPI module implementing the agent, of the OpenROADM
device models and of the initial configuration data. After loading
the configuration data, the agent must load all the configured
device drivers (Loadable Linux libraries) and identify the
implemented API functions.

 Using a NETCONF client (e.g. netopeer-cli), retrieval of

configuration and state data, focusing on the optical parameters,
in terms of supported spectral windows (media channel
capabilities).

 Edit-config operation to create cross-connections on the
different bands of a multi-band ROADM

 Edit-config operation to setup the transmission wavelength on a
ZR/ZR+ pluggable module

Component
Integrations

The OpenROADM agent has been integrated with the ONOS SDN
Controller for the control of multiband ROADMs.

 D4.4 GA Number 101016663

48

Component
KPIs

The kind of KPI that can be applied to the agent are related to delays and
latencies. The agent architecture allows it to be employed with different
data-plane hardware to implement basic OpenROADM based ROADMs
and transponders. This makes it difficult to define a set of measurements
that can characterize all kind of devices that can be implemented.
Moreover, most of the time required to perform different actions is
spent by the specific data plane hardware and it results to be several
orders of magnitude slower than the time taken by the agent for
NETCONF messages processing (tenth of seconds wrt tenth of
milliseconds). Therefore, it’s clear that it would be more meaningful to
characterize a device employing the agent.
That said and keeping in mind that delays involving a software module
are negligible wrt delays of optical resources, it can be meaningful to
characterize the agent as a standalone component (i.e. without
underlying data-plane hardware) from a scalability point of view. The
following KPIs are defined:

 Changes of loading time of the startup datastore (at agent
initialization) wrt the number of modelled circuit-packs, i.e. wrt
to the datastore dimensions. For example, in the ROADM case
how startup times changes increasing the degrees number (2, 4,
9 to cover the most typical ROADMs sizes).

 Time required to create roadm-connections (express or add-
drop) as a function of the number of degrees (2, 4, 9), i.e. of the
datastore dimensions.

Such tests have been documented in deliverable D4.2.

Status,
availability,
repository

The agent is publicly available as a docker container. Access is granted
on-demand, aiming at providing further collaboration opportunities.

Additional
Remarks

No remarks.

3.9 OPENCONFIG AGENT (CTTC AND CNIT)
Component Name: CTTC OpenConfig agent, CNIT OpenConfig agent

Summary B5G-OPEN has produced two different implementations of the OpenConfig

agent. One implemented at CTTC with the main aim of integrating it with
the CTTC developed multi-band transceiver and one implemented at CNIT
with the main aim of integrating it into the packet-optical SONiC based
node. Since the software architecture, interfaces, and proposed KPIs are
the same, both implementations are described in this section.

OpenConfig agent is an implementation of an SDN agent using
NETCONF/YANG with the OpenConfig data models.

It implements a subset of the data models, namely the OpenConfig
platform and optical transport as well as some extensions devised in the
context of B5G-OPEN to report details about the transceiver operational
modes.

 D4.4 GA Number 101016663

49

The software relies on ConfD free, a Tail-f/Cisco management agent
software framework for network elements. It enables the industry
adoption of NETCONF and YANG, and provides a simple mechanism to
develop SDN agents focusing on the business logic and on the actual data
models and semantics.

Description
and
Internal
architecture
of the
component

OpenConfig agent relies on a ConfD process running, which implements
the basic NETCONF/Yang framework. The software per-compiles data
models and keeps a Configuration Database (CDB).

Open Optical Terminals in general covers transponders, switchponders,
muxponders, etc. with the ability to switch and multiplex multiple client
signals into optical signals. The agent deals with uniform components
hierarchy, multiplexing stages and Cross-connection logic discovery and
Optical channel configuration (Frequency, power and operational mode).

The actual logic is implemented as a second process that connects to the
ConfD daemon via dedicated sockets. This process is written in C++ and
implements different classes for interacting with the ConfD engine. MAAPI
is C API which provides full access to the ConfD internal transaction engine.
CDB API can read (committed) configuration from the CDB and has
functions like cdb_set_value for operational (state) data only. With MAAPI
it is possible to create or attach to existing transaction and access
configuration data in the CDB. The modifications will be then propagated
at commit time of the transaction.

Notably, the agent takes care of the following aspects:

 Notification of changes in the configuration database: in this sense,

the actual SDN agent may react and configure the hardware
accordingly. In particular, it registers appropriate call-backs for
changes in the configuration of Optical Channels, including the
actual frequency, transmit optical power and operational mode

 It relies on CDB API and MAAPI from ConfD to write on the
operational data store, in such a way that operational data can be

 D4.4 GA Number 101016663

50

written to the ConfD database based on the status of the
hardware. In particular, the agent MUST report the composition of
the actual device in terms of components and subcomponents and
reflect configuration changes (e.g., config/frequency) into state
values (e.g., state/frequency).

Interface
Specificatio
n

The interfaces of the component are:

 NETCONF/YANG as the basic framework.

The supported data models are, for and OpenConfig release:

openconfig/optical-transport/openconfig-transport-types@2017-
08-16.yang

ietf/ietf-interfaces@2014-05-08.yang

openconfig/interfaces/openconfig-interfaces@2017-07-14.yang

openconfig/types/*.yang
openconfig/platform/*.yang
openconfig/optical-transport/*.yang

In particular, the agent implements the following extensions:

b5gopen/openconfig-terminal-device-property-types.yang

b5gopen/openconfig-terminal-device-properties.yang

The workflows that are in scope of B5G-OPEN are:

 Device discovery (NETCONF GET)

 OpenConfig Component discovery (NETCONF GET)

SDN CONTROLLER

DAC

MB S-BVT1

PIN1+TIA1

Laser1
C-band

Laser2
S-band

PIN2+TIA2

BVRx1
DSP

BVRx2
DSP

MZM2

MZM1

DAC
ADC

(OSC)

ADC
(OSC)

S-band BVT2

BVTx1
DSP

C-band BVT1

ROADM-1

ROADM-2

150km

35km

OXC-2

OXC-1

OPENCONFIG SERVER
OpenConfig agent OpenConfig agent

Laser DAC
(DSP TX)

OpenConfig agent

S/P

Mapping
Add TS

N-IFFT
Add CP

P/S
RF

upconversion

Demapping

S/P

CP removal

N-FFT

Equalization

TS removal

RF
downconversion

P/S

BVTx2
DSP

REST

REST
REST

MB Optical
aggregator/
distributor

ADC
(DSP Rx)

 D4.4 GA Number 101016663

51

Functional
Validation

The tests that can be done to validate the component are the following:

 Startup of the ConfD daemon and loading of initial operational and
configuration data

 Retrieval of the datastore of the NETCONF agent.

 Retrieval of components of the OpenConfig terminal device,
including focusing on the optical channel augment.

 Retrieval of the characteristics and current state of an Optical
Channel components

 Dynamic configuration of an optical channel attributes. This can be
done as an emulated device or integrated with CTTC S-BVT and
SONiC-based packet-optical nodes (i.e., pluggable configuration).

 Characterization of a given Operational Mode (e.g., mode-id 100)
in terms of B5G-OPEN physical impairment validation.

Component
Integrations

The OpenConfig agent is integrated with the ONOS SDN Controller, for the
control of sliceable BVTs as well as CTTC optical SDN controller

augment /oc-platform:components/oc-platform:component:
+--rw optical-channel

+--rw config
| +--rw frequency? oc-opt-types:frequency-type
| +--rw target-output-power? decimal64
| +--rw operational-mode? uint16
| +--rw line-port? -> /oc-platform:components/component/name
+--ro state

+--ro frequency?
+--ro target-output-power?
+--ro operational-mode?
+--ro line-port?
+--ro group-id?
+--ro output-power
| +--ro instant? decimal64
| +--ro avg? decimal64
| +--ro min? decimal64
| +--ro max? decimal64
| +--ro interval? oc-types:stat-interval
| +--ro min-time? oc-types:timeticks64
| +--ro max-time? oc-types:timeticks64
+--ro input-power
+--ro laser-bias-current
+--ro chromatic-dispersion
+--ro polarization-mode-dispersion
+--ro second-order-polarization-mode-dispersion
+--ro polarization-dependent-loss

<edit-config>

<target>{{target}}</target>

<config>

<components xmlns="http://openconfig.net/yang/platform">

<component>

<name>{{och_component_name}}</name>

<oc-opt-term:optical-channel xmlns:oc-opt-term

="http://openconfig.net/yang/terminal-device">

<config>

<frequency>{{freq_value}}</frequency>

<target-output-power>{{power}}</target-output-power>

<operational-mode>{{mode}}</operational-mode>

</config>

</oc-opt-term:optical-channel>

</component>

</components>

</config>

 D4.4 GA Number 101016663

52

The validation covers the management of S-BVT operational modes across
the whole provisioning process workflow. We demonstrate the retrieval of
the operational modes, how they are mapped to TAPI transceiver profiles,
and later used for path computation/validation and the subsequent
configuration of the BVT, including closed-loop adaptive transmission use
cases.

The CNIT version of the OpenConfig agent has been integrated with the
SONiC-based switche and with the HHI transponders utilized in the
experimental demonstration performed at HHI premises.

Component
KPIs

The considered set of component KPIs that can be measured
independently:

 Instantiation delay and footprint: when the agent is running as a
containerized application, characterized aspects related to
instantiation of the agent, as well as aspects related to memory
usage.

 Discovery latency: measure the time and the control plane
overhead (in terms of bytes, and throughput) it takes for an SDN
controller to discover the components of the transceiver upon a
NETCONF get operation.

 Operational Mode characterization: measure the time and the

control plane overhead (in terms of bytes, and throughput) it takes
for an SDN controller to discover the details of a given operational
mode, as defined within

b5gopen/openconfig-terminal-device-property-types.yang

b5gopen/openconfig-terminal-device-properties.yang

 Transaction delay: the time it takes to send a configuration change,

and this is reflected in the datastore. The focus shall be to change
an Optical channel frequency, power and operational model. This
KPI will be evaluated with and without hardware

FlexOpt Optical
SDN Controller

OpenConfig Terminal
Device

SDN Agent

Path Computation/
Digital Twin

Streaming Platform
(MQTT)

OpenROADM
Device

SDN Agent

OpenROADM
Device

SDN Agent

OpenConfig Terminal
Device

SDN Agent

Multiband
S-BVT

User/
Orchestrator

 D4.4 GA Number 101016663

53

- The Instantiation Delay characterizes aspects related to the

instantiation of the agent’s containers, and/or memory usage.
Launching the ConfD framework, which includes the loading of the
operational and initial configuration data, can range from ~17 – 20
ms (lower bound when operational data and config data are pre-
stored in xml files) to several seconds (1.230 s in a sample
execution). This is due to the latency to retrieve operational data
from the devices. The HAL startup time is ~8 ms, including
subscription to events. Consequently, including the container
orchestration latency, the initial startup of the SDN agent is
characterized by O(10s).

- The Discovery latency is defined as the time of the SDN controller
to discover the components of the transceiver upon a NETCONF
get operation. This latency comprises the time and the control
plane overhead (in terms of bytes, and throughput). With a back-
to-back setting between the controller and the agent, the retrieval
of components is done in ~475 ms (for an equivalent of ~400 xml
lines). Similarly, the Operational Mode Characterization latency is
the time to obtain the parameters of a given operational mode
given its mode-id (see Fig. 10). The retrieval of the operational
mode took ~300ms, associated to a NETCONF reply with 84 XML
lines (4837 characters).

- At the transmitter side, the central frequency and power of the

Tunable Laser Source (TLS) and the Digital/Analog Converter (DAC)
channels are modified. At the receiver side, the OSC can be
reconfigured. For example, two transceiver slices of the S-BVT1,
working within C- and S-bands and corresponding to two different
clients (c1 and c2), and two receiver slices of the S-BVT2 are
configured. This operation determines different parameters, such
as frequency (e.g., 193.4 THz, 200.26 THz), operational-mode (e.g.,
111), name (e.g., OCH-A-Out-1, OCH-A-Out-2), power (e.g., 6.5
dBm, 4 dBm), status (e.g., enabled, disabled), type (e.g., optical-
channel) and direction (e.g., TX, RX). Note that in this case, the
power at S band is lower being constrained by laser stability.

- A total setup time of ~300s is needed to perform all the required
OpenConfig operations to set up the connection. This time is
mainly caused by the programmable elements of the MB S-BVT1,
which include the TLS and the DAC, and are eventually configured
within ~60s. On the other hand, the configuration of the MB S-
BVT2 requires a higher setup time around 254s. The reason behind
this is the time needed to configure the oscilloscope, which acts as
ADC and includes both the signal acquisition and SNR/BER
calculation (offline DSP).

We use MQTT as a streaming platform where a MQTT intermediate broker
forwards publications in topics to subscribers. This enables synchronizing
the FlexOpt SDN controller (publisher) with the PCE/DT functional element
(subscriber). The latter connects to the Mosquitto MQTT broker and

 D4.4 GA Number 101016663

54

subscribes to [tapi/streaming] topic to receive asynchronous notifications.
The initial synchronization happens at startup, after the network has been
discovered which takes O(6s), namely: 5 seconds for network discovery
(with the corresponding OpenConfig and OpenROADM messages), and
around 900 ms involving the sending of ~40 MQTT publish messages. The
initial synchronization forwards to the PCE/DT relevant information, such
as network topology and supported operational modes as reflected in the
figure

Fig. Wireshark capture of the initial MQTT synchronization

Status,
availability,
repository

CTTC and CNIT software with proprietary license.
Relies on Cisco / Tail-F ConfD framework.

Additional
Remarks

Full paper with performance details: [Cas24b]

3.10 SONIC-BASED PACKET OPTICAL NODE (CNIT)
Component Name: SONiC-based packet optical node

Summary SONiC has been used as network operating system (NOS) of packet-

optical white-box nodes and extended with some components
(illustrated in green in the architectural figure) to enable the integration
with other B5G-OPEN components: (1) docker container running the
OpenConfig agent (CNIT version) to control external transponders, local
coherent transceivers, and IP interfaces; (2) REST-based APIs enabling
the control of coherent transceivers, Ethernet/IP interfaces and routing
processes; (3) exporter/adapter of monitoring information from SONiC
system and transceivers to the telemetry server.

 D4.4 GA Number 101016663

55

Description
and
Internal
architecture of
the
component

Interface
Specification

The SONic-based packet-optical node integrates with the following
elements:

 To SDN optical controller: the OpenConfig agent exposes a
YANG-based model to the SDN optical controller that will be
consumed through NETCONF.

 To SDN packet controller: the OpenConfig agent exposes a
YANG-based model to the SDN packet controller to be consumed
through NETCONF, that can be used to configure IP interfaces. In
addition, the SDN packet controller can directly access the REST-
based interface using RESTCONF.

 To telemetry manager: the telemetry agent communicates with
the telemetry manager adopting a client Redis adapter,
exploiting a Pub/Sub mechanism, injecting the data with the
proper format to the remote Redis DB.

 From the agent to REST-based APIs: (1) the OpenConfig agent
interacts with the REST APIs to read and write the pluggable
coherent transceivers configuration, to configure Ethernet/IP
interfaces and setup BGP adjacency; (2) the OpenConfig agent is
also enabled to interact with external coherent modules to
enable the control of experimental transceivers; (3) the
telemetry agent interacts with the REST APIs to retrieve
monitoring information via local Redis DB.
Following a capture of the REST API swagger is shown with the
configuration registered paths.

 D4.4 GA Number 101016663

56

 The REST APIs interacts with the SAI/SDK and CMIS/C-CMIS to

perform the configuration of pluggable coherent transceivers
Functional
Validation

The tests performed to validate the component are the following:

 Startup of the SONiC NOS and loading of initial data correctly
performed. Validate basic functionalities such as: the
Performance Monitoring (pmon), the REDIS database, the
CMIS/C-CMIS APIs, the SAI/SDK APIs.

 Deployment of each considered containers and perform
functional validation inside the SONiC environment. Executed
without significant degradation with respect to the test already
executed for the validation of each component.

 For such containers using the SONiC APIs, configuration requests

received from the upper layers (e.g., the SDN optical controller)
are correctly translated in a node configuration (e.g., the tuning
of a coherent pluggable on a specified wavelength).

 Multi-layer traffic switching: packet traffic incoming on packet
interfaces is correctly routed through coherent modules.

 D4.4 GA Number 101016663

57

The figure illustrates an experimental deployment including two SONiC
switches, and other devices. Specifically, the packet controller based on
ONOS (on the left) is connected to the SONiC switches using the
OpenConfig agent. During the experiment the optical coherent
transceivers have been configured several times using different
configuration parameters, successfully validating the components
deployed on the SONiC switches.

Component
Integrations

Other components this component is integrated with:

 SDN optical controller
 SDN packet controller
 Network orchestrator
 Telemetry manager.

Component
KPIs

 Time required at the data layer for enforcing a modification of
the central frequency of the optical coherent transceivers, has
been measured using ZR and ZR+ transceivers:

 The spectrum width required to preserve the quality of

transmission of a 400 Gbps channel with 16-QAM modulation
format has been evaluated in experimental measures:

 D4.4 GA Number 101016663

58

Status,
availability,
repository

CNIT software with proprietary license.

Additional
Remarks

Detailed functional and KPI evaluation can be found in [Sga24]

3.11 AI/ML MODELS FOR PSD AND POWER MANAGEMENT (NOKIA)
Component Name: Automatic power correction

Summary The desired performance is defined as a compromise between linear and

nonlinear contributions. It is the so-called nonlinear threshold which is
operating in the weakly nonlinear regime. Monitoring ASE and NL signal
to noise ratios is quite complex in a live network and has some limitations
which make this problem attractive for artificial neural networks (ANN).
The optical spectrum contains knowledge regarding linear and nonlinear
impairments specifically the shape is different if operating in linear or
nonlinear regime. In addition, the SNR-induced fluctuations from the
polarisation dependent loss (PDL) also show a pdf with a different shape
in linear and nonlinear regimes. Therefore, we can use either of these 2
shapes at the input of the ANN to get an optimal power correction to be
applied.

Description
and
Internal
architecture of
the
component

ANN for power monitoring architecture
For a given lightpath, the neural network takes as input normalized
power spectral density (PSD) or PDL-induced SNR fluctuation PDF vector
and returns as output an estimated power correction (∆𝑃). It works with
AI/ML and uses an ANN with 1 hidden layer with 10 neurons and 1 output
layer with 1 neuron. A neuron is a sequence of two operations: a
weighted sum followed by a nonlinear manipulation. It is a fully
connected ANN meaning that all neurons of the following layer take as
input all neurons from the preceding layer. The hidden layer employs
sigmoid function and the output layer uses the identity function.
We use pre-processing to normalize the PSD or PDF in the range [0, 1].

 D4.4 GA Number 101016663

59

Interface
Specification

The PSD component will be used as a standalone component. It is
integrated with an optical mesh network and telemetry database, as
shown in the figure below.

In the figure, the green and pink lightpaths are leveraging the PSD
component to optimize their performance. Each of them has the
following workflow. First the optical PSD is measured in the optical node
and sent to the node agent, responsible for communicating with the
control & management plane to (re)-configure optical nodes (here
transponder launch powers) and feed the telemetry database via a gRPC
/ gNMI interface. Then the PSD component pre-processes the PSD to
normalize it and optionally compress it to a given format, feeds the ANN
with the resulting PSD and obtains estimated power correction for each
ligthpath. These estimated power corrections are stored in a power
manager and can be used as recommendations to reconfigure the optical
nodes.

Functional
Validation

Tests done to validate the component
- Generate a set of measurements (different powers, lengths, …)

to feed the database for training, validation and testing of the
neural network.

- Evaluate the error between known optimal powers and new
estimated powers

- Assess the SNR gain obtained after applying power corrections

Component
Integrations

This component is integrated with a physical layer testbed to be able to
collect measurements. This is needed to build a database used for
training, validation and test of the PSD component.

Component
KPIs

 Gain/loss of performance: We measure the SNR gain/loss after
power corrections for both PSD and PDF shapes as input feature.
We show in the figure below the results for the PSD shape. The
SNR gain after correction is 0.5 dB for 1dB power correction. On
one had we can slightly lose close to the optimal power a 0.15dB,
but in the other hand, we can win 1dB for 2.5dB power
correction.

 D4.4 GA Number 101016663

60

In a later work, we proposed to use the PDF shape as input features.
We show similar trends in the measurement of SNR gain/loss after
power corrections as with the PSD shown in the top figure below.
We can observe a 0.3dB gain for 1dB power corrections. Note that
the two figures cannot be compared as the transmission parameters
are not the same, notably in the second case, PDL impairments is
accounted for.

 Compression rate: evaluate the minimum number of points

required in optical PSD / PDF to get a given accuracy. We
investigated the scalability of the component. First, we compress
the input PSD by taking fewer points equally spaced. We
investigated 3 different configurations with either 20, 100 and
315 input PSD points. As a figure of merit, we defined the error
as the different between the true power and the predicted
output power. We plot in the figure below the standard
deviation of the error as a function of the number of input PSD
points. As expected, when the number of PSD points is low, the
standard deviation increases. For 20 PSD points, the error
standard deviation is 1.67dB while for 315 PSD points it can
decrease down to 0.41 dB. To maintain a reasonable
performance, we can go down to 100 PSD points which gives 1dB
error standard deviation for the investigated line configurations.

 D4.4 GA Number 101016663

61

Second, we compress the input of the PDF shape by either taking
fewer points or by cutting the PDF tails. We notice that the
accuracy is almost constant when we decrease the number of
points (#bins). However, when we cut the tails (when Plim 1)
we start to degrade the performance. Both compressing
techniques are shown in the plot below.

Status,
availability,
repository

We developed two components leveraging AI/ML models for power
optimisation with either power spectrum density (see D4.2) or PDL-
induced SNR fluctuations (see D4.3). We proposed low complexity
implementation for both by evaluating the minimum number of inputs
required. And we tested their performance accuracy.
It is completed and available as a Nokia proprietary Matlab toolbox.

Additional
Remarks

No contribution to standard

3.12 TELEMETRY SYSTEM (UPC)
Component Name:

Summary Several telemetry architectures are available. In general, telemetry data

is collected from observation points in the devices and send to a central
system running besides the SDN controller. Although protocols
specifically devised for telemetry, like gRPC, compress data, the amount
of data that can be collected and the frequency of collection make those
architecture not practical.

 D4.4 GA Number 101016663

62

Our distributed telemetry system integrates measurements and event
data collection and supports intelligent data aggregation nearby data
collection, so agents receive and analyse measurements before sending
to a centralized manager.

Description
and
Internal
architecture of
the
component

The figure presents the reference network architecture with distributed
telemetry. An SDN architecture controls a number of optical nodes,
e.g., optical transponders and reconfigurable optical add-drop
multiplexers, in the data plane. A centralized telemetry manager is in
charge of receiving, processing and storing telemetry data in a
telemetry database (DB). Typically, the telemetry manager runs inside a
Monitoring and Data Analytics (MDA) system.
Some data exchange between the SDN control and the telemetry
manager is needed, e.g., the telemetry manager needs to access the
topology DB describing the optical network topology, as well as the DB
describing the lightpaths.

Every node in the data plane is locally managed by a node agent, which
translates the control messages received from the related SDN controller
into operations in the local node and exports telemetry data collected
from observation points (labelled M) enabled in the optical nodes. In
addition, events can be collected from applications and controllers
(labelled E). Telemetry agents run inside node agents and provide the
needed services for intelligent algorithms based on Artificial Intelligence
(AI) techniques to process collected telemetry measurements.
Internally, both, the telemetry agent and manager are based on three
main components: i) a manager module configuring and supervising the
operation of the rest of the modules; ii) a number of modules that
include algorithms, e.g., data processing, aggregation, etc. and
interfaces, e.g., gRPC; and iii) a Redis DB that is used in publish-subscribe
mode to communicate the different modules among them. This solution
provides an agile and reliable environment that simplifies
communication, as well as integration of new modules. A gRPC interface
is used for the telemetry agents to export telemetry to the telemetry
manager, as well for the telemetry manager to tune the behavior of
algorithms in the agents.

 D4.4 GA Number 101016663

63

Interface
Specification

A detailed architecture of the proposed telemetry system is presented in
the next figure, where the internal architecture of telemetry agents
inside node agents and the telemetry manager is shown.

Let us describe a typical telemetry workflow valid for a wide range of use
cases. The node agent includes modules (denoted data sources) that
gather telemetry data from observation points in the optical nodes.
Examples include optical spectrum analysers (OSA) in the ROADMs and
data from digital signal processing, e.g., optical constellations, in the TPs.
A telemetry adaptor has been developed, so data sources can export
collected data to the telemetry system; specifically, the adaptor receives
raw data from the data source and generates a structured json object,
which is then published in the local Redis DB (labelled 1 in the figure).
The periodicity for data collection can be configured within a defined
range of values. A number of algorithms can be subscribed to the
collected measurements. In this example, let us assume that only one
algorithm is subscribed, which processes the measurements locally. Such
processing might include doing: i) no transformation on the data (null
algorithm); ii) some sort of data aggregation, feature extraction or data
compression; or iii) some inference (e.g., for degradation detection). The
output data (transformed or not) are sent to a gRPC interface module
through the Redis DB (not shown in the figure) (2), which conveys the
data to the telemetry manager. Because gRPC requires a previous
definition of the data to be conveyed, our implementation encodes the
received data in base64, which allows generalization of the telemetry
data to be conveyed. Note that, although such encoding could largely
increase the volume of data to be transported, intelligent data
aggregation performed by telemetry agents could reduce such volume
to a minimum.
In the telemetry manager, the data are received by a gRPC interface
module that publishes them in the local Redis DB, so subscribed
algorithms can receive them. The algorithms in the telemetry manager
can implement functions related to data aggregation, inference, etc.
Once processed, the output data is published in the local Redis DB (4)
and can be stored in the telemetry DB (5) and/or be exported to external
systems (6). Interestingly, algorithms in the telemetry manager can
communicate with those in the telemetry agents using the gRPC
interface (7-8). Examples of such communication include parameter
tuning, among others.

 D4.4 GA Number 101016663

64

Functional
Validation

Tests done to validate the component:
- We generated measurements using the data source and the

telemetry adaptor and verified that: 1) they are received by the
selected algorithm in the telemetry agent; and 2) they are sent
to the telemetry manager and stored in the measurements DB.

- We generated events with the SDN controller and verify that
they are stored in the events DB.

Component
Integrations

The Telemetry system integrates with any data source provided that they
implement the telemetry adaptor. Examples of data sources for
measurements are transponders, ROADMs, and OSAs. Examples of data
sources for events are controllers and agents. The telemetry manager
integrates also with any other management system using external
delivery systems, like Kafka.

The Telemetry system was been demonstrated in OFC 2023 [Gon23b],
where we showed integration with network devices from Nokia and
ADVA, as well as with the CTTC’s SDN controller.

Component
KPIs

Each constellation sample includes 2048 symbols from a 16-QAM optical
signal and has a size of 16,384 bytes.

1. Autoencoder: Trained for the maximum compression that
produces a reproduction error < 2%, which results in vectors Z of
size 32 bytes. Vectors Z are output as JSON objects, where each
component is represented with 11 characters, and then
compressed, which resulted in 607 bytes.
When the message arrives at the telemetry manager through the
gRPC interface, it is used as input to the decoder that generates
a sample X*, which is finally stored in the telemetry DB. In our
tests, both, data encoding and decoding took 60 ms

2. Supervised feature extraction: the algorithm in the telemetry
agent applies GMM fitting to every constellation sample X
received and generates outputs of m = 16 vectors with 5 features
each. This process, outputs a JSON object with 1,159 characters,
which is then conveyed through the gRPC interface using 1,545
bytes.

Status,
availability,
repository

The pseudocode of the algorithms together with a thorough description,
and the performance evaluation has been reported in D4.3.
An example of data source has been made available to the project’s
partners and it was used for the OFC 2023 demonstration [Gon23b].
The performance evaluation is available in [Vel23a] and [Gon23a]

Additional
Remarks

No contribution to standard/open source

 D4.4 GA Number 101016663

65

3.13 FLEXTELEMETRY AGENT (ADTRAN)
Component Name: Adtran FlexTelemetry agent

Summary Flex-Telemetry is an application that periodically requests and collects

performance measurements from optical transport network devices. It
utilizes NETCONF and supports both open (OpenConfig) and proprietary
data models to ensure comprehensive data collection. The program
features a modular plugin system that provides a Northbound Interface
(NBI), capable of delivering stable telemetry streams to various
mediums, including time-series databases, in-memory databases, and
International Data Spaces (IDS). This modular approach allows Flex-
Telemetry to seamlessly integrate with diverse data storage and
processing systems, facilitating efficient, scalable access to performance
data across different platforms.

Description
and
Internal
architecture of
the
component

The FlexTelemetry Agent is a Python-based application designed to
collect and stream telemetry data from multiple network devices in real-
time. It uses NETCONF for general telemetry data collection and SNMP
specifically for amplifier data. The collected telemetry data can be sent
to various northbound interfaces, such as Redis, Apache Kafka, MQTT
(Mosquitto), and InfluxDB, providing a flexible and scalable solution for
monitoring and analyzing performance metrics. The agent supports a
range of devices, including optical transponders, Carrier Ethernet
switches, and optical amplifiers, making it versatile for different network
environments.
One of the core features of the FlexTelemetry Agent is its integration
with Telegraf for real-time data handling. When data is sent to message
brokers like Kafka and MQTT, the agent automatically spawns a Telegraf
instance that collects and routes the metrics to InfluxDB. This enables
applications needing real-time data—such as machine learning models—
to access performance data immediately, while historical data is stored
in a time-series database for later analysis, supporting both real-time and
retrospective analytics.
The FlexTelemetry agent was successfully tested in the OFC 2023 demo.
The KPIs to measure the saleability and performance of the
FlexTelemetry agent are the minimum time interval between reads and
number of supported parameters/devices with different SBI drivers and
NBI plugins.

Interface
Specification

The agent uses NETCONF and SNMP in the southbound to retrieve the
data from the devices in the data plane.
The agent exposes various output plugins in the north bound including
InfluxDB, kafka, MQTT and Redis for data collection and processing.
.

Functional
Validation

Tests done to validate the component:
- Tested data retrieval and exposure of all the plugins on the real

network devices deployed in the lab.

 D4.4 GA Number 101016663

66

Component
Integrations

The FlexTelemetry agent integrates with a data analytics pipeline using
Kafka, Redis, or direct time-series database interface like InfluxDB. In
B5G-OPEN, the FlexTelemetry agent acts as a Telemetry Adaptor and
interfaces to the Telemetry architecture using Redis. Examples of data
sources for measurements are transponders, ROADMs, and inline
amplifiers.
The FlexTelemetry agent has been demonstrated in OFC 2023 [Gon23b],
where we showed integration with the Telemetry manager from UPC.

Component
KPIs

Status,
availability,
repository

The pseudocode of the algorithms together with a thorough description,
and the performance evaluation has been reported in D4.3.
An example of data source has been made available to the project’s
partners and it was used for the OFC 2023 demonstration [Gon23b].

Additional
Remarks

No contribution to standard/open source

3.14 MESARTHIM – FAILURE MANAGEMENT USING A SNR DIGITAL TWIN (UPC)
Component Name: MESARTHIM

Summary The performance of optical devices can degrade because of aging and

external causes like, for example, temperature variations. Such
degradation might start with a low impact on the Quality of Transmission
(QoT) of the supported lightpaths (soft-failure). However, it can
degenerate into a hard-failure if the device itself is not repaired or
replaced, or if an external cause responsible for the degradation is not
properly addressed.
MESARTHIM compares the QoT measured in the transponders with the
one estimated using a QoT tool. Those deviations can be explained by
changes in the value of input parameters of the QoT model representing
the optical devices, like noise figure in optical amplifiers and reduced
Optical Signal to Noise Ratio in the Wavelength Selective Switches.
By applying reverse engineering, MESARTHIM estimates the value of
those modelling parameters as a function of the observed QoT of the
lightpaths.

Description
and
Internal
architecture of
the
component

The optical layer consists of a disaggregated set of ROADMs and TRXs,
and a set of optical links with a number of In-Line OAs interconnecting
ROADMs. The control plane includes: i) a Network Controller to program
the network devices; and ii) a Monitoring and Data Analytics (MDA)
system that includes the telemetry system in charge of collating
measurements from the data plane, analyses the data and issues
recommendations to the network controller, as well as notifications
regarding failures. The MDA system stores a replica of the operational

 D4.4 GA Number 101016663

67

databases (DB) that are synchronized from the network controller. A QoT
digital twin based on GNPy that estimates the SNR of the lightpaths is
used for connection provisioning and for failure analytics. In addition, it
collects measurements from the optical devices with a given periodicity
and stores them in a TelemetryDB. These measurements are used by
MESARTHIM to: i) estimate those modeling parameters related to optical
devices (resources); ii) analyze the evolution of the measured SNR and
that of the modeling parameters to detect any degradation as soon as it
appears; and iii) determine the severity of the degradation based on the
foreseen impact on the performance of the lightpaths.

The figure next sketches the MESARTHIM methodology implemented in
the MDA system.

Specifically, the following building blocks can be identified: (1) the
Surveillance block that analyses the SNR measurements and the value of
modelling parameters to detect any meaningful degradation (e.g., by
threshold crossing); (2) the Localization block that localizes the soft-
failure; (3) the “Find Modelling Configuration” block that finds the most
likely value of the modelling parameters of a given resource, so it results
into SNR values of the lightpaths being supported by such resources
similar to those that have been actually measured; (4) the soft-failure
Identification block that, assuming a resource has been localized as the
source of the soft-failure, finds what is the modelling parameter
responsible for such failure; and (5) the Severity Estimation block that
estimates whether and when the soft-failure will degenerate into a hard-
failure. In addition, two internal repositories are used: i) the Device
Modelling Config DB with the evolution of the value of modelling
parameters along time for every resource; and ii) the Network Diagnosis
DB that stores historical data for analysis purposes. The MESARTHIM
manager coordinates those blocks to achieve intelligent QoT analysis.

 D4.4 GA Number 101016663

68

Interface
Specification

MESARTHIM runs as part of the MDA, and it can access:
- the telemetry measurements DB to analyse constellation

samples
- the Operational DB to get the route of the lightpaths.
- the QoT tool

Functional
Validation

Tests done to validate the component:
- The Find Modeling Configuration has been evaluated experimentally

in the testbed in collaboration with CNIT.
- A simulation environment was used to validate and assess the rest

of the components over a German-like network scenario. The optical
data plane was simulated by a GNPy instance. We generated SNR
measurements for every lightpath by varying every modelling
parameter of every intermediate OAs and A/D WSSs in the ROADMs
in the network, independently.

- The resulting samples were stored in the simulated control plane
and fed the module implementing the MESARTHIM methodology.

Component
Integrations

This component is integrated in an MDA system and with the telemetry
system, which provides measurements.

Component
KPIs

- Find Modeling Configuration block R2 > 0.98
- Anticipation of soft failures > 15% through the estimation of

modelling parameters w.r.t. SNR analysis.
- Relative average error of the modelling parameters estimation < 8%
- Severity estimation anticipation > 40%
-

Status,
availability,
repository

The pseudocode of the algorithms together with a thorough description
has been reported in D4.3 and [Vel23b].
The performance evaluation has been reported in D4.3.

Additional
Remarks

No contribution to standard/open source

3.15 OCATA - DIGITAL TWIN FOR THE OPTICAL TIME DOMAIN (UPC)
Component Name:

Summary The development of Digital Twins to represent the optical transport

network might enable multiple applications for network operation,
including automation and fault management.
OCATA is a deep learning-based digital twin for the optical time domain
that is based on the concatenation of deep neural networks (DNN)
modelling optical links and nodes, which facilitates representing
lightpaths. The DNNs model linear and nonlinear noise, as well as optical
filtering. Additional DNN-based models extract useful lightpath metrics,
such as lightpath length, number of optical links and nonlinear fibre
parameters. OCATA exhibits low complexity, thus making it ideal for real-
time applications.

 D4.4 GA Number 101016663

69

Description
and
Internal
architecture of
the
component

We assume disaggregated optical networks, with transponders,
ROADMs and optical amplifiers from multiple vendors and assume that
information regarding the network topology, the type of fibres, etc., as
well as the configuration and monitoring data from every optical
component is accessible.
In this scenario, a lightpath from site A to site Z can be modelled by
concatenating models for the different components supporting such
lightpath, i.e., transponders, ROADMs, and optical links, where output IQ
optical constellation features of one component model are the input
features of the following one.

Every component model modifies the input features according to the
noise that the specific physical network component introduces.
Specifically, a transmitter (Tx) model generates the initial constellation
features following a Tx configuration. Then, models for ROADMs and
optical links are concatenated in the same order that the respective
network components appear in the route of the lightpath.
To minimize complexity and ensure component model availability at
lightpath provisioning time, such models are trained beforehand using
datasets collected from the network and/or coming from simulation.
Then, at provisioning time, the specific concatenated model for the
lightpath is created by selecting trained component models for the
network components in the route of the lightpath, from a model
database. Finally, to reduce complexity even more, only the features of
a few selected constellation points are propagated. Consequently, a
constellation reconstruction (CR) module generates the features of the
non-propagated constellation points based on the received features to
complete the IQ optical constellation. If the models are accurate enough,
the features of constellation samples collected from the optical
transponder in Z would match the expected optical constellation
features obtained with OCATA.

Interface
Specification

OCATA runs as part of the network control, and it access:
- the telemetry measurements DB to analyse constellation

samples
- the LSP DB to get the route of the lightpaths

 D4.4 GA Number 101016663

70

The results of the analysis are stored in an internal DB and used for
algorithms in the SDN controller.

Functional
Validation

- Verify that OCATA gets the route of the right lightpath from the
LSP DB

- Verify that OCATA gets the right constellation samples from the
telemetry DB

- Verify that OCATA determines the lightpath length and
compares to that stored in the LSP DB.

Component
Integrations

This component has been integrated with the telemetry system, which
provides measurements of optical constellations.

Component
KPIs

Numerical evaluation: A simulator of a digital coherent system
implemented in MATLAB was employed to reproduce scenarios and
generate datasets. OCATA DNN models were trained used the generated
dataset. The considered scenario consisted of a lightpath passing
through 8 ROADMs and a total fibre length of 1,120 km.

- Evaluation of the supervised feature-extraction-methodology-
based on GMM fitting. We found that constellation points can
be accurately modelled as Gaussian distributions for all the
considered distances, since the obtained p-value of the test
always exceeded the commonly accepted significance level of
0.05.

- For lightpath modelling we obtained negligible errors for
features μ (max error < 2%) independently of the link length,
whereas max error for σ features was is around 30% for low σ
values although it decreases when the path length increases,
becoming under 15%, which is, in general, a good enough
performance to validate the models.

- The reconstruction of the features of the non-selected
constellation points showed an accuracy of 97%.

- Lightpath length analysis showed average error for lightpath
estimation < 5% for lightpaths over 500Km and average error for
estimation of number of hops of the lightpath < 5%.

- Algorithms for failure detection based on OCATA are able to
detect filter related failures under non-ideal network conditions
in few hours after the degradation starts and achieved
anticipation of more than one day before the hard-failure.

Experimental evaluation: The models were evaluated using
experimental measurements and showed that the Euclidean distance
comparing features from experimental and OCATA IQ constellation
samples is below 0.1 in all the cases and the maximum relative error on
the average σ features after different number of spans is below 14%.

Status,
availability,
repository

The pseudocode of the algorithms together with a thorough description,
and the performance evaluation has been reported in D4.3.
The main methodology is available in [Rui22]. Algorithms have been
experimentally assessed in collaboration with HHI and INF [Dev23a].
Applications have been developed for failure management in [Dev23b]

 D4.4 GA Number 101016663

71

Additional
Remarks

No contribution to standard/open source

 D4.4 GA Number 101016663

72

REFERENCES
[BBF] Broadband Forum YANG models on GitHub: https://github.com/BroadbandForum/yang

Boi24 F. Boitier et al, “Monitoring of Chromatic Dispersion in Multiband Access and Metro Converged
Optical Network”, ECOC’2024 Frankfurt, Germany 22-26/09/2024.

[Cas24a] R. Casellas et al., "Multi-Domain Transparent Service Provisioning in Multi-Band Optical
Networks," 2024 24th International Conference on Transparent Optical Networks (ICTON), Bari,
Italy, 2024

[Cas24b] Ramon Casellas, Laia Nadal, Ricardo Martinez, Ricard Vilalta, Raul Muñoz, and Michela Svaluto
Moreolo, "Photonic device programmability in support of autonomous optical networks," J.
Opt. Commun. Netw. 16, D53-D63 (2024)

[CMIS] “CMIS” [Online]. Retrieved April 27, 2022, https://www.oiforum.com/wp-
content/uploads/OIF-CMIS-05.2.pdf

[Del19a] C. Delezoide et al., "Automated Alignment Between Channel and Filter Cascade," in Optical
Fiber Communication Conference (OFC) 2019, OSA Technical Digest (Optical Society of America,
2019), paper Th2A.48.

[Del19b] C. Delezoide et al., “Marginless Operation of Optical Networks,” J. Lightwave Technol. 37, 1698-
1705 (2019)

[Dev23a] M. Devigili, D. Sequeira, C. Santos, M. Ruiz, B. Shariati, N. Costa, A. Napoli, J. Pedro, J. Fischer,
and L. Velasco, "Experimental Validation of Deep Learning-based Models for Optical Time
Domain Analysis," in Proc. Conference on Lasers and Electro-Optics (CLEO), 2023.

[Dev23b] M. Devigili, M. Ruiz, S. Barzegar, N. Costa, A. Napoli, J. Pedro, and L. Velasco, "Degradation
Detection and Severity Estimation by Exploiting an Optical Time and Frequency Digital Twin,"
in Proc. Optical Fiber Communication Conference (OFC), 2023.

[Dut22] Eric Dutisseuil, Arnaud Dupas, Alexandre Gouin, Fabien Boitier, Patricia Layec, "Hitless
Transmission Baud Rate Switching in a Real-Time Transponder Assisted by an Auto-Negotiation
Protocol," OFC 2022

[Fer20] A. Ferrari et al., “GNPy: an open source application for physical layer aware open optical
networks”. Journal of Optical Communications and Networking, Vol. 12, Issue 6, 2020, Pp. C31-
C40, 12(6), C31–C40. https://doi.org/10.1364/JOCN.382906

[Gio23] A. Giorgetti, A. Sgambelluri, F. Cugini, E. Kosmatos, A. Stavdas, J. M. Martinez-Caro, P. Pavon,
O. Gonzalez De Dios, R. Morro, L. Nadal, R. Casellas "Modular Control Plane Implementation for
Disaggregated Optical Transport Networks with Multi-band Support", ECOC2023

[GNPy] GNPy [Online]. Retrieved October 7, 2022, from https://gnpy.readthedocs.io/en/master/

[Gon23a] P. Gonzalez, L. Velasco and M. Ruiz, "A Distributed Telemetry Architecture for Optical
Networks," in Proc. IEEE International Conference on Transparent Optical Networks (ICTON),
2023.

[Gon23b] P. Gonzalez, R. Casellas, J-J Pedreno-Manresa, A. Autenrieth, F. Boitier, B. Shariati, J. Fischer, M.
Ruiz, J. Comellas, and L. Velasco, "Distributed Architecture Supporting Intelligent Optical
Measurement Aggregation and Streaming Event Telemetry," in Proc. Optical Fiber
Communication Conference (OFC), 2023.

[Gou21] A. Gouin, A. Dupas, Ll. Gifre, A. Benabdallah, F. Boitier, P. Layec, "Real-time optical transponder
prototype with auto-negotiation protocol for software defined networks," Journal of Optical
Communications and Networking, vol. 13, no 9, p. 224-232, 2021

 D4.4 GA Number 101016663

73

[GNMI] gRPC Network Management Interface (gNMI) [online], Retrieved October 5, 2022, from
https://github.com/openconfig/reference/blob/master/rpc/gnmi/gnmi-specification.md

[IBN] L. Velasco, S. Barzegar, F. Tabatabaeimehr, and M. Ruiz, "Intent-Based Networking for Optical
Networks [Invited Tutorial]," IEEE/OPTICA Journal of Optical Communications and Networking
(JOCN), vol. 14, pp. A11-A22, 2022.

[K8s] Kubernetes [Online]. Retrieved October 5, 2022, from https://kubernetes.io/docs/home/

[KAFKA] [Online] https://kafka.apache.org/

[Kos23] E. Kosmatos et al., "SDN-enabled path computation element for autonomous multi-band
optical transport networks," in Journal of Optical Communications and Networking, vol. 15, no.
11, pp. F48-F62, November 2023, doi: 10.1364/JOCN.492244.

[Man21] C. Manso et al., “TAPI-enabled SDN control for partially disaggregated multi-domain (OLS) and
multi-layer (WDM over SDM) optical networks [Invited]”. Journal of Optical Communications
and Networking, 13(1), 2021, pp. A21–A33. https://doi.org/10.1364/JOCN.402187

[Mor24] R. Morro et al,. “Field Trial of Transparent Multi-band Multi-domain Disaggregated IPoWDM
Networks”, ECOC’2024 Frankfurt, Germany 22-26/09/2024.

[OIF] “OIF” [Online] https://www.oiforum.com/

[ONF] Open Networking Foundation [Online]. Retrieved October 5, 2022, from
https://opennetworking.org/

[ONOS] "ONOS" [Online], https://opennetworking.org/onos/,
https://github.com/opennetworkinglab/onos

[OpenROADM] OpenROADM [Online], http://openroadm.org/

[P4] “P4” [Online]. Retrieved October 5, 2022, https://p4.org/

[Pav15} P. Pavon-Marino and J. L. Izquierdo-Zaragoza, “Net2plan: An open source network
planning tool for bridging the gap between academia and industry,” IEEE Netw, vol. 29,
no. 5, pp. 90–96, Sep. 2015, doi: 10.1109/MNET.2015.7293311.

[RESTCONF] A. Bierman, M. Björklund and K. Watsen, RFC 8040 "RESTCONF Protocol", January 2017

[Rui22] M. Ruiz, D. Sequeira, and L. Velasco, "Deep Learning -based Real-Time Analysis of Lightpath
Optical Constellations [Invited]," IEEE/OPTICA Journal of Optical Communications and
Networking (JOCN), vol. 14, pp. C70-C81, 2022.

[SAI] "Switch Abstraction Interface" [Online] https://github.com/opencomputeproject/SAI

[Sga24] A. Sgambelluri et al., "Failure recovery in the MANTRA architecture with an IPoWDM SONiC
node and 400ZR/ZR+ pluggables," in Journal of Optical Communications and Networking, vol.
16, no. 5, May 2024.

[SONIC] "SONiC" [Online] https://sonic-net.github.io/SONiC/

[Swe22] N. L. Swenson, “Open XR Concept Introductory White Paper,” Tech. rep., Open XR Forum
(2022).

[TAPI] “ONF Transport API SDK” [Online], retrieved December 9, 2022 from
https://github.com/OpenNetworkingFoundation/TAPI/releases/

 D4.4 GA Number 101016663

74

[Vel23a] L. Velasco, P. Gonzalez, and M. Ruiz, "An Intelligent Optical Telemetry Architecture," in Proc.
Optical Fiber Communication Conference (OFC), 2023.

[Vel23b] L. Velasco, S. Barzegar, and M. Ruiz, "Using a SNR Digital Twin for Failure Management," in Proc.
IEEE International Conference on Transparent Optical Networks (ICTON), 2023.

